

Epidemiology of herpes simplex virus type 2 in Latin America and the Caribbean: systematic review, metaanalyses and metaregressions

Manale Harfouche,^{1,2} Haifa Maalmi,³ Laith J Abu-Raddad 💿 ^{1,2,4}

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi. org/10.1136/sextrans-2021-054972).

For numbered affiliations see end of article.

Correspondence to

Professor Laith J Abu-Raddad, WHO Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation— Education City, Doha, Qatar; Ija2002@qatar-med.cornell.edu

Received 15 January 2021 Revised 14 March 2021 Accepted 8 April 2021 Published Online First 4 June 2021

ABSTRACT

Objective To characterise epidemiology of herpes simplex virus type 2 (HSV-2) in Latin America and the Caribbean.

Methods HSV-2 reports were systematically reviewed and synthesised, and findings were reported following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Meta-analyses and metaregressions were conducted.

Finding 102 relevant reports were identified including 13 overall incidence measures, 163 overall (and 402 stratified) seroprevalence measures, and 7 and 10 proportions of virus detection in genital ulcer disease and in genital herpes, respectively. Pooled mean seroprevalence was 20.6% (95% CI 18.7% to 22.5%) in general populations, 33.3% (95% CI 26.0% to 41.0%) in intermediate-risk populations, 74.8% (95% CI 70.6% to 78.8%) in female sex workers, and 54.6% (95% CI 47.4% to 61.7%) in male sex workers, men who have sex with men and transgender people. In general populations, seroprevalence increased from 9.6% (95% CI 7.1% to 12.4%) in those aged <20 years to 17.9% (95% CI 13.6% to 22.5%) in those aged 20-30, 27.6% (95% CI 21.4% to 34.2%) in those aged 30-40 and 38.4% (95% CI 32.8% to 44.2%) in those aged >40. Compared with women, men had lower seroprevalence with an adjusted risk ratio (ARR) of 0.68 (95% CI 0.60 to 0.76). Seroprevalence declined by 2% per year over the last three decades (ARR of 0.98, 95% CI 0.97 to 0.99). Pooled mean proportions of HSV-2 detection in GUD and genital herpes were 41.4% (95% CI 18.9% to 67.0%) and 91.1% (95% CI 82.7% to 97.2%), respectively.

Conclusions One in five adults is HSV-2 infected, a higher level than other world regions, but seroprevalence is declining. Despite this decline, HSV-2 persists as the aetiological cause of nearly half of GUD cases and almost all of genital herpes cases.

INTRODUCTION

Check for updates

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Harfouche M, Maalmi H, Abu-Raddad LJ. Sex Transm Infect 2021;**97**:490–500. With an estimated 24 million incident infections every year, herpes simplex virus type 2 (HSV-2) is an STI of global concern.¹ Unlike common bacterial STIs, HSV-2 is a chronic and incurable infection that is characterised by frequent subclinical shedding and reactivation.^{2–6} When symptomatic, HSV-2 infection manifests in the form of painful recurrent genital ulcers that are associated with sexual and psychosocial morbidities and adverse impact on quality of life.^{7–10} HSV-2 can also be passed vertically from mother to child, thus causing neonatal herpes, a rare but highly disabling and sometimes fatal outcome in newborns.⁹¹¹ Though with some debate,¹² evidence suggests that HSV-2 increases the risk of HIV acquisition and transmission and may have contributed to driving larger HIV epidemics especially in Africa.² ^{13–15}

With the disease burden of STIs, and per the United Nations Sustainable Development Goals,¹⁶ the WHO formulated the 'Global Health Sector Strategy on STIs',¹⁷ which focused on integrating preventive and control measures aimed at eliminating STIs as a main public health concern by 2030. While controlling HSV-2 infection is a main pillar of the global effort to address the population's sexual and reproductive health needs,¹⁸¹⁹ current prevention modalities are inadequate to control transmission and there are no specific programmes for HSV-2 prevention and control even in highincome countries.²⁰⁻²² This highlights the critical need for HSV-2 vaccination as a strategic approach to control transmission and to reduce if not eliminate the clinical, psychosexual and economic burden of this infection.^{18 23-26}

Against this context, the WHO is spearheading a multisectorial effort to establish the business case and return on investment for HSV-2 vaccines.^{18 19 27 28} To inform this effort, this study aims to characterise HSV-2 epidemiology in Latin America and the Caribbean by delineating HSV-2 incidence and antibody prevalence (seroprevalence) levels, estimating pooled mean HSV-2 seroprevalence in the different at-risk populations, identifying predictors of high seroprevalence, and estimating the pooled means for the proportion of HSV-2 detection in genital ulcer disease (GUD) and the proportion of HSV-2 detection in genital herpes.

METHODS

The methods for this study were adapted from our previous systematic reviews characterising HSV-2 epidemiology in Africa²⁹ and HSV-1 epidemiology in Latin America and the Caribbean.³⁰ The study methods are described in table 1.

Data sources and search strategy

This systematic review was informed by the *Cochrane Collaboration Handbook*,³¹ and its findings were reported per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (online supplemental table S1).³² Forty-seven countries were included in the study and classified into subregions based on the

Methodology	Detailed description
Data source and search strategy	 Search conducted on 12 March 2020 in PubMed, Embase and Literatura Latino Americana em Ciências daSaúde (LILACS). Search strategies included exploded MeSH/Emtree terms and broad terms with no language or time restrictions. The definition of Latin America and the Caribbean included 47 countries classified into three subregions: Central America: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama. South America: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Surinam, Uruguay, Venezuela. Caribbean: Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, Bermuda, British Virgin Islands, Cayman Islands, Cuba, Curacao, Dominican Republic, Grenada, Guadeloupe, Haiti, Jamaica, Martinique, Montserrat, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, St. Barthelemy, St. Martin, Trinidad and Tobago, Turks and Caicos.
Study selection and inclusion and exclusion criteria	 Search results were imported into the reference manager EndNote (Thomson Reuters, USA). Screening was performed in four stages: Duplicate publications were identified and excluded. Titles and abstracts were screened for relevant and potentially relevant publications. Full texts of relevant and potentially relevant publications were retrieved and screened for relevance. Bibliographies of relevant publications and reviews were checked for additional potentially relevant publications. Inclusion criteria were any publication, including a study with a minimum sample size of 10, reporting primary data on any of the following outcome measures: HSV-2 antibody incidence as detected by a type-specific diagnostic assay. HSV-2 antibody prevalence (seroprevalence) as detected by a type-specific diagnostic assay. Proportion of HSV-2 in GUD as detected by standard viral detection and subtyping methods. Foculuation criteria were Case reports, case series, reviews, editorials, commentaries and qualitative studies. Measures reporting seroprevalence in infants <6 months old as their antibodies can be maternal in origin. In this study, the term 'publication' refers to a document reporting one or several outcome measures. 'Study' or 'measure' refers to a specific outcome measure and its details.
Data extraction and data synthesis	 Extracted variables included author(s), publication title, year(s) of data collection, publication year, country of origin, country of survey, city, study site, study design, study sampling procedure, study population and its characteristics (eg, sex and age), sample size, HSV-2 outcome measures, and diagnostic assay. Overall outcome measure and their stratified measures were extracted, provided the sample size in each stratum is ≥10. For studies including overall sample size, but no individual strata sample sizes, the sample size of each stratum was assumed equal to overall sample size divided by the number of strata in the study. Stratification hierarchy for incidence and seroprevalence in descending order of preference were Population type as defined in online supplemental box S1. Sex. Age group classified as (groups optimised to best fit reported data): <20-years old. >20-years old. >40 years old. >40 years old. >40 years old. Stratification hierarchy for GUD and genital herpes included genital herpes episode status and study site:
Quality assessment	The Cochrane's approach for ROB assessment included Study's precision classification into low versus high based on the sample size (<200 vs ≥200). Study's appraisal into low vs high ROB was determined using two quality domains: - Sampling method: probability-based vs non-probability based. - Response rate: ≥80% vs <80% or unclear.
Meta-analyses	 Meta-analyses were conducted using DerSimonian-Laird random-effects models with inverse variance weighting. The variance of each outcome measure was stabilised using the Freeman-Tukey arcsine square-root transformation. Pooled mean HSV-2 seroprevalence was estimated for each population type by sex, and for general populations by country, subregion, year of data collection range and year of publication range. Pooled proportions of HSV-2 detection in GUD and in genital herpes cases were estimated. Heterogeneity assessment was based on three complementary metrics: Cochran's Q statistic to assess existence of heterogeneity in effect size (p value of <0.1 indicated heterogeneity). I² heterogeneity measure to assess the percentage of between-study variation in effect size that is due to actual differences in effect size rather than chance. Prediction interval to describe the distribution of true outcome measures around the pooled mean.
Metaregressions	 Univariable and multivariable random-effects meta-regression analyses using log-transformed proportions were carried out to identify predictors of HSV-2 seroprevalence. Factors in the univariable model with a p value of <0.1 were included in the multivariable analysis. Factors in the multivariable model with a p value of ≤0.05 were deemed to be significant predictors. Variables included in the univariable metaregression model for HSV-2 seroprevalence were Population type. Age group. Sex. Country. Subregion. Country's income: LIC, LMIC, UMIC, and HIC according the World Bank classification. Assay type (western blot, ELISA, and monoclonal antibody). Sample size. Sampling method. Response rate. Year of data collection. Year of data collection category (<2000, 2000–2010, >2010). The year of data collection nad a few missing variables that were imputed by adjusting the year of publication using the median difference with the year of data collection.

IT INS methodology was adapted from a previously conducted systematic review characterising the epidemiology of HSV-1 in Europe.⁶⁸ GUD, genital ulcer disease; HIC, high-income country; HSV-1, herpes simplex virus type 1; HSV-2, herpes simplex virus type 2; LIC, low-income country; LMIC, lower-income to middle-income country; ROB, risk of bias; UMIC, upper-income to middle-income country.

WHO and United Nations definitions for Latin America and the Caribbean (table 1).^{33 34} Search strategies are in online supplemental table S2.

Study selection and inclusion and exclusion criteria

Screening and double screening were conducted by HM and MH, respectively. Screening steps and eligibility criteria are detailed in table 1.

Data extraction and synthesis

Extraction and double extraction of relevant publications were performed by MH and HM. The list of extracted variables is found in table 1.

Quality assessment

Given documented limitations in HSV-2 assays,^{35 36} assessment of assays' reliability and validity was conducted with the assistance of Professor Rhoda Ashley-Morrow of the University of Washington, a leading expert in HSV-2 serology. Only studies with reliable and valid assays were included in the systematic review, and each study was subsequently assessed for precision and risk of bias (ROB) as informed by the Cochrane approach.³¹ Details of the quality assessment are in table 1.

Meta-analyses

To account for sampling variation and heterogeneity in effect sizes, meta-analyses were conducted using DerSimonian-Laird random-effects models³⁷ with the variance stabilised using the Freeman-Tukey double arcsine transformation.³⁸ These analyses were conducted in R V.3.4.1³⁹ using the 'meta' package⁴⁰ (table 1).

Metaregressions

To identify possible predictors of HSV-2 seroprevalence and sources of between-study heterogeneity, log-transformed seroprevalence measures were regressed in STATA/SE V.13⁴¹ using the 'metareg' package⁴² (table 1).

RESULTS

Search results and scope of evidence

Study selection process following the PRISMA guidelines is detailed in figure 1. Overall, 4371 citations were identified. After deduplication and title and abstract screening, full text of 631 unique citations were retrieved for further screening. This step identified 95 relevant publications, and their bibliography

Figure 1 Flowchart of article selection for the systematic review of HSV-2 infection in Latin America and the Caribbean, per the PRISMA guidelines.³² HSV-2, herpes simplex virus type 2; LILACS, Literatura Latino Americana em Ciências daSaúde, PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Table 2 Pooled mean e	stimates for	HSV-2 serop	revalence am	ong the diff	erent at-risk populatio	ons in Latin Ameri	ca and the Caribbear	ı
	Outcome measures	Samples	HSV-2 seroj (%)	prevalence	Pooled mean HSV-2 seroprevalence	Heterogeneity me	easures	
Population type	Total N	Total N	Range	Median	Mean (%) (95% CI)	Q* (P value)	I²† (%) (95% CI)	Prediction interval‡ (%)
General populations	236	56 457	0.0-71.4	19.6	20.6 (18.7 to 22.5)	6495.1 (<0.001)	96.(96.1 to 96.6)	1.4–52.5
Women	139	23 959	0.0-71.4	23.9	25.2 (22.5 to 28.0)	2940.6 (<0.001)	95.3 (94.8 to 95.8)	2.7–59.2
Men	85	16 446	0.0-64.3	10.9	14.2 (11.6 to 17.0)	1914.1 (<0.001)	95.6 (95.0 to 96.1)	0.0-44.8
Mixed sexes	12	16 052	2.2-35.8	15.0	16.8 (11.7 to 22.6)	689.2 (<0.001)	98.4 (98.0 to 98.8)	1.7-42.4
Intermediate-risk populations	24	6775	3.4–79.2	32.2	33.3 (26.0 to 41.0)	817.4 (<0.001)	97.2 (96.5 to 97.7)	4.1-72.6
Women	9	1255	22.2–79.2	43.5	49.3 (38.9 to 60.8)	102.5 (<0.001)	92.2 (87.4 to 95.2)	13.4–85.6
Men	15	5520	3.4–51.1	26.8	25.6 (19.5 to 32.2)	331.0 (<0.001)	95.8 (94.3 to 96.9)	4.6-55.6
High-risk populations	93	25 344	9.0-100	71.2	66.2 (61.0 to 71.2)	6206.7 (<0.001)	98.5 (98.4 to 98.6)	18.0–99.3
FSWs	56	9023	9.0-100	75.0	74.8 (70.6 to 78.8)	901.6 (<0.001)	93.9 (92.8 to 94.9)	43.2-96.7
MSWs, MSM and transgender people	37	16321	13.0–39.9	50.9	54.6 (47.4 to 61.7)	2851.4 (<0.001)	98.7 (98.6 to 98.9)	13.9–91.9
STI clinic attendees and symptomatic populations	6	432	38.9–95.0	47.0	49.2 (41.9 to 56.5)	8.2 (0.146)	39.0 (0.0 to 75.8)	31.3–67.1
Mixed sexes	6	432	38.9–95.0	47.0	49.2 (41.9 to 56.5)	8.2 (0.146)	39.0 (0.0 to 75.8)	31.3–67.1
HIV-positive individuals and individuals in HIV discordant couples	19	2840	20.0–88.0	65.6	67.3 (60.0 to 74.2)	264.1 (<0.001)	93.2 (90.7 to 95.0)	33.8–93.2
Women	9	1354	20.0-88.0	65.6	68.9 (56.2 to 78.6)	133.4 (<0.001)	94.0 (90.7 to 96.1)	25.6-97.7
Men	5	1066	42.3-81.1	53.0	60.6 (45.6 to 74.7)	83.9 (<0.001)	95.2 (91.5 to 97.3)	9.4–99.3
Mixed sexes	5	420	61.4-87.0	73.0	71.9 (62.9 to 80.2)	13.9 (0.007)	71.3 (27.4 to 88.7)	40.0-95.0
Other populations§	24	3497	15.1-82.0	56.8	51.1 (43.7 to 58.5)	422.6 (<0.001)	94.6 (93.0 to 95.8)	16.5-85.2
Women	21	3225	45.1-82.0	56.6	52.0 (44.2 to 59.8)	368.7 (<0.001)	94.6 (92.9 to 95.9)	17.4–85.5
Men	2¶	172	59.6-60.8	60.2	60.5 (53.0 to 67.8)	-	-	-
Mixed sexes	1¶	100	-	_	18.0 (11.0 to 26.2)	-	-	_

*Q: the Cochran's Q statistic is a measure assessing the existence of heterogeneity in seroprevalence.

11²: a measure that assesses the magnitude of between-study variation that is due to actual differences in seroprevalence across studies rather than chance.

*Prediction interval: a measure that estimates the distribution (95% interval) of true seroprevalence around the estimated mean.

§Other populations include populations with an undetermined risk of acquiring HSV-2 infection such as patients with cervical cancer or their spouses.

¶No meta-analysis was done due to the small number of studies (n<3).

FSW, female sex worker; HSV-2, herpes simplex virus type 2; MSM, men who have sex with men; MSW, male sex worker;

screening identified seven additional relevant publications, including conference posters and abstracts.^{43–49}

In total, 102 publications were deemed relevant and extracted. This extraction yielded 13 HSV-2 overall incidence measures, 163 overall (402 stratified) seroprevalence measures, 7 overall proportion measures of HSV-2 detection in GUD and 10 overall proportion measures of HSV-2 detection in genital herpes.

HSV-2 incidence overview

Online supplemental table 3 summarises the extracted seroconversion rates (number of measures (n)=10) and incidence rates (n=6). Study design was either longitudinal cohort (n=8, 61.5%) or randomised controlled trial (n=5, 38.4%), with follow-up durations ranging between 335 days and 2 years. Across all populations, seroconversion rate ranged between 2.0% and 51.1%, and incidence rate ranged between 4.5 and 38.5 per 100 person-years.

HSV-2 seroprevalence overview

Overall extracted seroprevalence measures (n=163) are listed in online supplemental table S4. The earliest study was published in 1989 and the most recent study was published in 2020. Majority of studies were based on convenience sampling (n=96, 58.9%).

Stratified seroprevalence measures varied by population type classification (table 2), with seroprevalence ranging between

0.0% and 71.4% with a median of 19.6% among general populations (n=236), between 3.4% and 79.2% with a median of 32.2% among intermediate-risk populations (n=24), between 9.0% and 100% with a median of 71.2% among high-risk populations (n=93), between 38.9% and 95.0% with a median of 47.0% among STI clinic attendees and symptomatic populations (n=6), and between 20.0% and 88.0% with a median of 65.6% among HIV-positive individuals and individuals in HIV discordant couples (n=19). A detailed summary of seroprevalence measures by sex across the population type classifications is in table 2.

Pooled mean HSV-2 seroprevalence

Table 2 summarises the pooled mean HSV-2 seroprevalence by sex across populations. In general populations, the pooled mean was 25.2% (95% CI 22.5% to 28.0%) among women and 14.2% (95% CI 11.6% to 17.0%) among men. In intermediaterisk populations, the pooled mean was 49.3% (95% CI 38.9%to 60.8%) among women and 25.6% (95% CI 19.5% to 32.2%) among men. In high-risk populations, the pooled mean was 74.8% (95% CI 70.6% to 78.8%) among female sex workers and 54.6% (95% CI 47.4% to 61.7%) among male sex workers, men who have sex with men and transgender people. In STI clinic attendees and symptomatic populations (mixed population of women and men), the pooled mean was 49.2% (95% CI

 Table 3
 Pooled mean estimates for HSV-2 seroprevalence among the general population in Latin America and the Caribbean

	Outcome measures	Sample size	HSV-2 serop (%)	orevalence	Pooled mean HSV-2 seroprevalence	Heterogeneity measures		
Population classification	Total N	Total N	Range	Median	Mean (%) (95% Cl)	Q* (P value)	l²† (%) (95% Cl)	Prediction interval‡ (%)
Countries								
Brazil	79	22 671	0.0-71.4	28.0	25.5 (22.2 to 28.9)	2049.9 (<0.001)	96.2 (95.7 to 96.6)	3.8–56.9
Colombia	14	1633	1.7–67.3	37.7	35.9 (23.9 to 48.7)	351.6 (<0.001)	96.3 (95.0 to 97.3)	0.5-86.6
Costa Rica	11	1800	17.7–58.8	44.6	41.7 (34.2 to 49.4)	108.8 (<0.001)	90.8 (85.6 to 94.1)	15.7–70.4
Mexico	53	19574	0.0-45.0	10.9	13.4 (10.8 to 16.2)	1392.9 (<0.001)	96.3 (95.7 to 96.8)	0.6–37.1
Peru	65	6896	0.0–38.0	9.0	11.7 (9.5 to 14.1)	500.3 (<0.001)	87.2 (84.4 to 89.5)	0.0-33.1
Other countries§	14	3883	11.8–65.0	39.6	41.2 (32.6 to 50.1)	378.4 (<0.001)	96.6 (95.4 to 97.4)	10.0-77.0
Subregions								
Central America	68	22688	0.0-59.9	14.9	18.4 (15.1 to 21.9)	2694.7 (<0.001)	97.5 (97.2 to 97.8)	0.5–51.4
South America	164	32 590	0.0-71.4	21.3	21.1 (18.8 to 23.4)	3632.7 (<0.001)	95.5 (95.1 to 95.9)	1.5–53.3
Caribbean	4	1179	30.5-54.0	37.2	38.7 (29.9 to 47.9)	20.9 (0.001)	85.7 (64.9 to 94.2)	5.9-79.0
Age group								
<20 years	28	5194	0.0-29.0	9.0	9.6 (7.1 to 12.4)	229.1 (<0.001)	88.2 (84.1 to 91.2)	0.5-26.4
20–30 years	30	4453	0.0-47.4	20.8	17.9 (13.6 to 22.5)	379.7 (<0.001)	92.4 (90.2 to 94.1)	1.1-46.4
30-40 years	17	1983	9.6–56.0	28.3	27.6 (21.4 to 34.2)	157.2 (<0.001)	89.8 (95.3 to 93.1)	5.6–57.8
>40 years	34	5029	10.9–71.4	40.3	38.4 (32.8 to 44.2)	561.6 (<0.001)	94.1 (92.7 to 95.3)	10.0-72.0
Mixed	127	39 798	0.0-67.3	17.0	18.7 (16.4 to 21.2)	4188.3 (<0.001)	997.0 (96.7 to 97.3)	0.9–49.5
Year of publication category								
<2000	21	2901	5.0-67.3	36.0	34.1 (26.2 to 42.5)	406.4 (<0.001)	95.1 (93.6 to 96.2)	4.0-74.2
2000–2010	132	28618	0.0-71.4	23.1	22.8 (20.3 to 25.5)	3336.4 (<0.001)	96.1 (95.7 to 96.4)	2.1-55.6
>2010	83	24938	0.0-65.0	10.9	14.3 (12.1 to 16.8)	1812.0 (<0.001)	94.9 (94.9 to 96.0)	0.7–39.1
Year of data collection category	/							
<2000	83	9229	0.0-71.4	30.8	31.1 (27.4 to 34.9)	1173.1 (<0.001)	93.0 (91.9 to 94.0)	5.3-65.7
2000–2010	143	33 565	0.0-59.9	12.0	15.0 (13.1 to 17.1)	3450.4 (<0.001)	95.9 (95.5 to 96.3)	0.3-43.4
>2010	12	13835	10.4–65.0	29.3	30.7 (24.5 to 38.4)	649.0 (<0.001)	98.3 (97.8 to 98.7)	6.9–61.9
All studies	238	56628	0.0-71.4	20.0	20.8 (19.0 to 22.8)	6630.7 (<0.001)	96.4 (96.2 to 96.7)	1.4–53.1

*Q: the Cochran's Q statistic is a measure assessing the existence of heterogeneity in seroprevalence.

tl²: a measure that assesses the magnitude of between-study variation that is due to actual differences in seroprevalence across studies rather than chance.

*Prediction interval: a measure that estimates the distribution (95% interval) of true seroprevalence around the estimated mean.

§Other countries include Argentina, Barbados, Bolivia, Haiti, Honduras and Panama.

HSV-2, herpes simplex virus type 2.

41.9% to 56.5%). In HIV-positive individuals and individuals in HIV discordant couples, the pooled mean was 68.9% (95% CI 56.2% to 78.6%) among women and 60.6% (95% CI 45.6% to 74.7%) among men. Forest plots of these meta-analyses are in online supplemental figure S1.

Table 3 summarises pooled mean seroprevalence estimates in general populations for different subpopulation categorisations. By country, the pooled mean was lowest at 11.7% (95% CI 9.5% to 14.1%) in Peru and was higher at 13.4% (95% CI 10.8% to 16.2%) in Mexico, 25.5% (95% CI 22.2% to 28.9%) in Brazil, 35.9% (95% CI 23.9% to 48.7%) in Colombia and 41.7% (95% CI 34.2%–49.4%) in Costa Rica. Across age groups, pooled mean seroprevalence increased steadily starting at 9.6% (95% CI 7.1% to 12.4%) in <20-year-old individuals, then at 17.9% (95% CI 13.6% to 22.5%) in individuals aged 20–30 years, 27.6% (95% CI 21.4% to 34.2%) in individuals aged 30–40 years and reaching 38.4% (95% CI 32.8% to 44.2%) in >40-year-old individuals.

Predictors of HSV-2 seroprevalence

Results of the metaregression analyses are shown in table 4 (online supplemental tables S5 and S6). In the univariable analysis, 12 variables were found eligible for inclusion in the multivariable model (p<0.1). Two sets of multivariable models were

conducted to account for the collinearity between the year of publication and the year of data collection.

Each conducted multivariable model explained about 69% of seroprevalence variation and included population type, age group, sex, subregion, country's income, sample size, sampling method and response rate, in addition to year of publication or year of data collection. The 'country' and 'country's income' variables were not included in the multivariable models due to collinearity with subregion. However, they did not add notable new results when they were included in sensitivity analyses instead of subregion (online supplemental table S5).

In the model including year of publication as a categorical variable (table 4) and compared with the general populations, HSV-2 seroprevalence was higher by 1.55-fold (95% CI 1.22 to 1.96) in intermediate-risk populations, 3.09-fold (95% CI 2.67 to 3.57) in high-risk populations, 2.40-fold (95% CI 1.48 to 3.90) in STI clinic attendees and symptomatic populations, and 3.06-fold (95% CI:2.37 to 3.95) in HIV-positive individuals and individuals in HIV discordant couples.

Compared with women, men had a 0.68-fold (95% CI 0.60 to 0.76) lower seroprevalence. Compared with those <20 years old, seroprevalence was higher by 1.63-fold (95% CI 1.27 to 2.09) in individuals aged 20–30 years old, 2.24-fold (95% CI 1.68 to 2.99) in individuals aged 30–40 years old individuals,

Population characteristics Provide Provident Filt Tetrant Provident Filt Modent Filt Population characteristics Pepulation size Provident Filt 24 675 1.00 - - 400 45.95 1.55 <th>Population characteristics Populations 236 Populations General populations 236 Intermediate-risk 93 93 High-risk 93 94 Populations 19 94 Populations 10 93 Populations 10 93 Populations 10 94 Populations 10 94 Populations 10 94 Populations 10 94 Price 10 10 Populations 10 <</th> <th>Outcome Sample measures size</th> <th>Univariable analysi</th> <th>S</th> <th></th> <th></th> <th>Multivariable ana</th> <th>alysis*</th> <th></th> <th></th>	Population characteristics Populations 236 Populations General populations 236 Intermediate-risk 93 93 High-risk 93 94 Populations 19 94 Populations 10 93 Populations 10 93 Populations 10 94 Populations 10 94 Populations 10 94 Populations 10 94 Price 10 10 Populations 10 <	Outcome Sample measures size	Univariable analysi	S			Multivariable ana	alysis*		
Floating Total Total R 95% (1) p value (w) (%) AR 95% (1) 100 Ppublation characteristics Ppuplations 23 56.57 1.10 - -0001 45.98 1.00 - 309 (2.517 a 357) - Higheristic 2 3.09 2.645 1.00 - - 0001 45.98 1.00 - 309 (2.517 a 357) -	Pobulation characteristics Population syne General populations 236 Population characteristics Population syne 24 Population ch				LR test P	Adiusted R ²	2 Model 1†		Model 2	
Population characteristic Population Set7 1.00 - - - - - - - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 1.55 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.57 1.56 1.56	Population characteristics Populations 236 Intermediate-risk 24 populations 33 High-risk 3 Pipeline 5 Populations 5 Pipeline 5 Pipeline 5 Pipeline 5 Pipeline 5 Pipeline 5 Age group 20-30 years Pipeline 2 Populations 3 Pipeline 2 Pipeline	Total n Total N	RR (95% CI)	p value	value	(%)	ARR (95% CI)	P value	ARR (95% CI)	P value
	Intermediate-risk 24 populations 31 clinic attendees 6 31 clinic attendees 6 and symptomatic 3 and sym	lations 236 56457	1.00	Т	<0.001	45.98	1.00	I	1.00	I
High-risk poulidions 5 25344 3.09 (2.61 to 3.61) <0.001 3.39 (2.67 to 3.51) Syndpondions 6 432 2.49 (1.47 to 4.22) 0.001 3.30 (2.57 to 3.39) Syndpondions 6 432 2.49 (1.47 to 4.22) 0.001 3.06 (2.37 to 3.39) Syndpondions 19 2.80 3.21 (2.38 to 4.32) <0.001	High-risk 3 High-risk 5 STI clinic attendees 6 and symptomatic 19 populations 19 STI clinic attendees 6 and symptomatic 19 populations 19 STI clinic attendees 6 and symptomatic 19 populations 19 httv-positive 19 individuals and 14 individuals in HIV discordant couples discordant couples 20 Age group <20 years	risk 24 6775	1.52 (1.16 to 2.00)	0.002			1.55 (1.22 to 1.96)	<0.001	1.54 (1.22 to 1.96)	<0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	STI dinic attendees 6 and symptomatic populations 19 HV-positive 19 individuals in HV individuals and individuals in HV Age group <20 years	93 25344	3.09 (2.64 to 3.61)	<0.001			3.09 (2.67 to 3.57)	<0.001	3.08 (2.66 to 3.57)	<0.001
	Hrvpositive individuals in HIV discordant couples 19 Age group Can years 24 Age group Can years 24 Age group Can years 22 Age group Can years 23 Age group Can years 23 Age group Constant couples 23 Age group Mixed sexes 23 Age group Mixed sexes 24 Age group Mixed sexes 24 Advice Brazil 106 Countries Brazil 106 Brazil Mixed sexes 24 Advice Connobia 126 Suthregions Central America 124 Country's income LC and LMIC 264 Country's income LC and LMIC 264 Country's income LC and LMIC 264	ndees 6 432 atic	2.49 (1.47 to 4.22)	0.001			2.40 (1.48 to 3.90)	<0.001	2.35 (1.45 to 3.81)	0.001
Age group Chile populations 24 3497 24 335 6538 1.00 - 0.011 1.56 (1.24 to 1.97) Age group <20 years 35 6538 1.00 - <0.001 1.56 (1.24 to 1.97) <	Age group Other populations§ 24 Age group <20 years	ld 2840 Id HIV uples	3.21 (2.38 to 4.32)	<0.001			3.06 (2.37 to 3.95)	<0.001	3.02 (2.34 to 3.89)	<0.001
Age group < 20 years 35 653 1.00 - < 0.001 10.26 1.00 - 20-30 years 47 7751 2.06 (1.40 to 3.00) < 0.001 10.26 1.63 (1.27 to 2.09) < 0.001 10.36 1.63 (1.27 to 2.09) < 0.001 2.40 years 23 2.58 (1.64 to 4.04) < 0.001 1.23 (1.65 to 2.99) < 0.01 1.23 (1.65 to 2.99) < 0.01 1.23 (1.65 to 2.99) < 0.01 1.23 (1.65 to 2.90) < 0.01 1.23 (1.61 to 2.20)	Age group <20 years	tions§ 24 3497	2.42 (1.85 to 3.16)	<0.001			1.56 (1.24 to 1.97)	<0.001	1.53 (1.21 to 1.94)	<0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20-30 years 47 30-40 years 22 >40 years 23 >40 years 23 Mixed ages 259 Sex Women 234 Mixed sexes 24 Subregions Colombia Subregions Central America South America 264 Country's income LIC and LMIC MIC 354	35 6538	1.00	I	<0.001	10.26	1.00	I	1.00	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30-40 years 22 >40 years 39 >40 years 39 Nixed ages 234 Men 144 Men 146 Countries Brazil 106 Revico 76 Peru 131 Other¶ 42 Subregions Central America Subregions Central America South America 264 Country's income LC and LMIC UMIC 354	47 7751	2.05 (1.40 to 3.00)	<0.001			1.63 (1.27 to 2.09)	<0.001	1.62 (1.26 to 2.09)	<0.001
>40 years 39 5940 2.84 (1.92 to 4.18) <0.001	 >40 years 39 Sex Women 234 Mixed ages 259 Mixed ages 24 Momen 234 Mixed sexes 24 Countries Brazil 106 Colombia 106 Colombia 106 Rexico 76 Peru 131 Subregions Central America 264 Country's income UIC and LMIC 29 UMIC 354 	22 2933	2.58 (1.64 to 4.04)	<0.001			2.24 (1.68 to 2.99)	<0.001	2.22 (1.66 to 2.97)	<0.001
Mixed ages 259 72183 2.49 (1.82 to 3.41) < 0.001 4.82 1.79 (1.44 to 2.21) $< < < < < < < < < < < < < < < < < < < $	SexMixed ages259SexWomen234Men144Mixed sexes24CountriesBrazil106Colombia19Costa Rica13Mexico76Peru131Other¶264SubregionsCentral America124South America264Country's incomeIJC and LMIC29UMIC354	39 5940	2.84 (1.92 to 4.18)	<0.001			3.22 (2.50 to 4.14)	<0.001	3.08 (2.40 to 3.96)	<0.001
Sex Women 234 3816 1.00 - 0.001 4.82 1.00 - Men 144 39525 0.67 (0.56 to 0.80) <0.001	Sex Women 234 Men 144 Mixed sexes 24 Countries Brazil 106 Colombia 10 Costa Rica 13 Mexico 76 Panama 13 Peru 131 Subregions Central America 264 Contral America 264 Country's income LIC and LMIC 29 UMIC 354	259 72183	2.49 (1.82 to 3.41)	<0.001			1.79 (1.44 to 2.21)	<0.001	1.71 (1.39 to 2.11)	<0.001
Men 144 33525 0.67 (0.56 to 0.80) <0.001 0.267 0.68 (0.60 to 0.76) < Mixed sexes 24 17004 0.81 (0.57 to 1.16) 0.267 0.59 (0.46 to 0.77) <	Men144Mixed sexes24Mixed sexes24CountriesBrazil106Colombia19Costa Rica13Mexico76Panama15Peru131Other¶42SubregionsCentral AmericaSubregionsCentral AmericaCountry's incomeLIC and LMICUMIC354	234 38816	1.00	I	0.001	4.82	1.00	I	1.00	I
Mixed sexes 24 17004 0.81 (0.57 to 1.16) 0.267 0.59 (0.46 to 0.77) < 0.59 Countries Brazil 106 25766 1.00 - < 0.0014 12.58 - -<	Mixed sexes24CountriesBrazil106Colombia19Costa Rica13Mexico76Peru131Peru131Other¶42SubregionsCentral AmericaSubregionsCentral AmericaCountry's incomeLIC and LMICUMIC354	144 39525	0.67 (0.56 to 0.80)	<0.001			0.68 (0.60 to 0.76)	<0.001	0.69 (0.61 to 0.77)	<0.001
Countries Brazil 106 25766 1.00 - <0.0011 12.58 -	CountriesBrazil106Colombia19Costa Rica13Mexico76Panama15Peru131Other¶42SubregionsCentral AmericaSouth America264Caribbean14Country's incomeLIC and LMICUMIC354	24 17004	0.81 (0.57 to 1.16)	0.267			0.59 (0.46 to 0.77)	<0.001	0.62 (0.48 to 0.80)	<0.001
Colombia 19 2247 1.36 (0.91 to 2.01) 0.125 - - Costa Rica 13 2364 1.46 (0.92 to 2.30) 0.102 - - - Mexico 76 23437 0.71 (0.56 to 0.91) 0.008 - - - - Peru 13 24976 0.92 (0.74 to 1.14) 0.006 - - - - Peru 131 24976 0.92 (0.74 to 1.14) 0.006 - - - - - Subregions Central America 124 1381 (1.18 to 2.78) 0.006 -	Colombia 19 Costa Rica 13 Mexico 76 Panama 15 Peru 131 Other¶ 42 Other¶ 42 Subregions Central America 264 South America 264 Caribbean 14 Country's income UIC and LMIC 29 UMIC 354	106 25766	1.00	I	<0.001	12.58	I	I	I	I
Costa Rica 13 2364 1.46 (0.92 to 2.30) 0.102 - - Mexico 76 23437 0.71 (0.56 to 0.91) 0.008 - - - - Panama 15 3334 1.81 (1.18 to 2.78) 0.006 - - - - Peru 131 24976 0.92 (0.74 to 1.14) 0.476 - - - - Other¶ 42 1321 1.84 (1.39 to 2.45) <0.001	Costa Rica 13 Mexico 76 Panama 15 Peru 131 Otherff 42 Subregions Central America 264 South America 264 Caribbean 14 Country's income UIC and LMIC 29 UMIC 354	19 2247	1.36 (0.91 to 2.01)	0.125			I	I	I	I
Mexico 76 23437 0.71 (0.56 to 0.91) 0.008 - - Panama 15 3334 1.81 (1.18 to 2.78) 0.006 -	Mexico 76 Panama 15 Peru 131 Other¶ 42 Other¶ 42 Subregions Central America 124 South America 264 Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	13 2364	1.46 (0.92 to 2.30)	0.102			I	I	I	I
Panama 15 3334 1.81 (1.18 to 2.78) 0.006 - - - Peru 131 24976 0.92 (0.74 to 1.14) 0.476 -	Panama 15 Peru 131 Other¶ 42 Subregions Central America 124 South America 264 Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	76 23437	0.71 (0.56 to 0.91)	0.008			1	I	I	I
Peru 131 24976 0.92 (0.74 to 1.14) 0.476 -	Peru 131 Other¶ 42 Subregions Central America 124 South America 264 Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	15 3334	1.81 (1.18 to 2.78)	0.006			I	I	I	I
Other¶ 42 13221 1.84 (1.39 to 2.45) <0.001 -	Other¶ 42 Subregions Central America 124 South America 264 Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	131 24976	0.92 (0.74 to 1.14)	0.476			I	I	I	I
Subregions Central America 124 38103 1.00 - 0.065 0.82 1.00 - South America 264 54798 0.95 (0.79 to 1.14) 0.666 1.13 (1.00 to 1.27) C Caribbean 14 2444 1.62 (1.02 to 2.58) 0.040 1.17 (0.87 to 1.57) C Country's income LIC and LMIC 29 9846 1.00 - <0.001‡	Subregions Central America 124 South America 264 Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	42 13221	1.84 (1.39 to 2.45)	<0.001			I	I	I	I
South America 264 54798 0.95 (0.79 to 1.14) 0.606 1.13 (1.00 to 1.27) 0 Caribbean 14 2444 1.62 (1.02 to 2.58) 0.040 1.17 (0.87 to 1.57) 0 Country's income LIC and LMIC 29 9846 1.00 - <0.001#	South America 264 Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	ica 124 38103	1.00	I	0.065	0.82	1.00	I	1.00	I
Caribbean 14 2444 1.62 (1.02 to 2.58) 0.040 1.17 (0.87 to 1.57) C Country's income LIC and LMIC 29 9846 1.00 - <0.001‡	Caribbean 14 Country's income LIC and LMIC 29 UMIC 354	a 264 54798	0.95 (0.79 to 1.14)	0.606			1.13 (1.00 to 1.27)	0.047	1.12 (0.99 to 1.27)	0.053
Country's income LIC and LMIC 29 9846 1.00 – <0.001‡ 9.07 – – – – – – – – – – – – – – – – – – –	Country's income LIC and LMIC 29 UMIC 354	14 2444	1.62 (1.02 to 2.58)	0.040			1.17 (0.87 to 1.57)	0.281	1.17 (0.87 to 1.56)	0.287
UMIC 354 81 539 0.45 (0.33 to 0.62) <0.001 – –	UMIC 354	29 9846	1.00	I	<0.001	9.07	I	I	I	I
		354 81 539	0.45 (0.33 to 0.62)	<0.001			I	I	I	I
HIC 19 3960 0.86 (0.54 to 1.36) 0.528 – –	HIC 19	19 3960	0.86 (0.54 to 1.36)	0.528			I	I	I	I

Table 5 Pooled mean proportions of HSV-2 virus isolation in clinically diagnosed GUD and in clinically diagnosed genital herpes in Latin America and the Caribbean

	Outcome measures	Samples	Proportion isolation (%	of HSV-2 。)	Pooled proportion of HSV-2 isolation (%)	Heterogeneity m	easures	
Population type	Total N	Total N	Range	Median	Mean (95% CI)	Q*(P value)	l²† (%) (95% Cl)	Prediction interval‡ (%)
Patients with GUD	7	603	0.0–77.7	50.9	41.4 (18.9 to 67.0)	184.5 (<0.001)	96.7 (95.0 to 97.9)	0.0–100
Patients with genital herpes	10	278	71.5–100	90.1	91.1 (82.7 to 97.2)	31.3 (<0.001)	71.2 (45.2 to 84.9)	58.3–100

*Q: the Cochran's Q statistic is a measure assessing the existence of heterogeneity in pooled outcome measures, here proportions of HSV-2 virus isolation in GUD and in genital herpes.

t¹² a measure assessing the magnitude of between-study variation that is due to true differences in proportions of HSV-2 virus isolation across studies rather than sampling variation.

*Prediction interval: a measure quantifying the distribution 95% interval of true proportions of HSV-2 virus isolation around the estimated pooled mean.

GUD, genital ulcer disease; HSV-2, herpes simplex virus type 2.

and 3.22-fold (95% CI 2.50 to 4.14) in >40-year-old individuals. Seroprevalence was 1.13-fold (95% CI 1.00 to 1.27) higher in South America compared with Central America.

Small-study effect was identified—seroprevalence was 0.75fold (95% CI 0.64 to 0.87) lower in studies with a sample size of >200 compared with those with a sample size of <200. Seroprevalence was 1.16-fold (95% CI 1.00 to 1.35) higher in studies using probability-based sampling compared with studies using probability-based sampling. Seroprevalence was 0.79-fold (95% CI 0.63 to 0.99) lower in studies with low response rate (<80%) compared with studies with high response rate (>80%). No effect was found for assay type on observed seroprevalence.

Compared with studies published before the year 2000, those published after 2010 had 0.74-fold (95% CI 0.61 to 0.89) lower seroprevalence. When year of publication was included as a linear term instead of a categorical variable, seroprevalence was found declining by 0.98-fold (95% CI 0.97 to 0.99) per year. Similar results were found when the year of data collection was used in the metaregressions instead of the year of publication (online supplemental table S6). Year of publication was used in the main analysis as its data were more complete than those for year of data collection.

HSV-2 isolation in GUD and in genital herpes

Online supplemental table S7 summarises the studies reporting proportions of HSV-2 detection in GUD or in genital herpes, while table 5 shows the pooled means for these proportions. Proportion of HSV-2 detection in GUD (n=7) ranged between 0.0% and 77.7% with a median of 50.9% and a pooled proportion of 41.4% (95% CI 18.9% to 67.0%). The proportion of HSV-2 detection in genital herpes (n=10) ranged between 71.5% and 100% with a median of 90.1% and a pooled proportion of 91.1% (95% CI 82.7% to 97.2%). Forest plots of the meta-analyses are in online supplemental figure S2.

Quality assessment

The results of the quality assessment are summarised in online supplemental table S8. In total, 82.2% of studies had high precision; 28.8% had low ROB in the sampling method domain; and 35.6% had low ROB in the response rate domain. Only 2.4% of studies had high ROB in both quality domains.

DISCUSSION

Based on a large volume of data that powered a variety of analyses, the epidemiology of HSV-2 infection in Latin America and the Caribbean was comprehensively investigated. With about 20% of adults being seropositive (table 2), this region harbours one of the highest seroprevalence levels worldwide,^{1 50-52} second only to sub-Saharan Africa.¹ Nonetheless and remarkably, this region is witnessing a rapidly declining seroprevalence at a rate of about 2% per year (table 4), for reasons that are not yet clear. Curiously, such declines have been also observed in the USA^{26 53-56} and more recently in sub-Saharan Africa.²⁹ Since HSV-2 seroprevalence has been shown to be an objective biomarker of a population's sexual risk behaviour and risk of HIV infection, ^{57–62} seroprevalence declines could be suggestive of declines in risky sex, possibly in response to the threat of HIV infection.⁶³⁻⁶⁶ Other factors may have also contributed, such as the global expansion of HIV/STI response, including primary prevention interventions,^{67 68} STI awareness that encouraged engagement in safer sexual practices⁶⁹ and, possibly, socioeconomic development that has changed the structure of sexual networks towards a structure that is less conducive for STI transmission. In concordance with these declines for HSV-2 seroprevalence, evidence suggests declines in the prevalence of other STIs across world regions, such as of HIV^{66 70} and syphilis.⁷¹ It remains to be seen whether these declines are localised to some regions or subregions, or global in nature.

The results of the present study confirmed key classic attributes of HSV-2 epidemiology, and importantly established *effect sizes* for these attributes (table 4), thereby providing parameter inputs and adjustment cofactors for future STI burden estimations using mathematical modelling. There was strong hierarchy in seroprevalence based on sexual risk behaviour classification that explained alone 44% of the seroprevalence variation (table 4). This hierarchy was also consistent with that found recently for sub-Saharan Africa.²⁹ Seroprevalence reached high levels that exceeded 60% in populations at high risk, such as female sex workers and men who have sex with men (table 2).

Compared with women, men had 0.68-fold lower HSV-2 seroprevalence (table 4), providing further support for a higher bioanatomical susceptibility to the infection among women.^{9 52 72} Consistent with existing evidence,^{1 52 72 73} age played a critical role in exposure to this infection. Seroprevalence grew steadily with age right after sexual debut (tables 3 and 4). However, unlike in sub-Saharan Africa where it plateaued by mid-30s,²⁹ seroprevalence continued to grow with age in Latin America and the Caribbean even for those >40 years of age.

The results have shown some evidence for subregion and country variability in HSV-2 seroprevalence (tables 3 and 4). There was also evidence for higher seroprevalence in countries

with lower income (tables 3 and 4) that are suggestive of lower socioeconomic status being conducive to higher risk of exposure to this infection, as observed elsewhere.^{50 74 75}

The results further show that HSV-2 infection is the aetiological cause of nearly half of GUD cases in this region (table 5), confirming the disproportional role for this infection in this disease outcome. The role of HSV-2 in GUD may continue at this high level for decades to come despite the declining seroprevalence, as other causes of GUD, such as syphilis, ^{71 76} could also be declining at the same time. HSV-2 infection (as opposed to HSV-1 infection) was also the aetiological cause of >90% of genital herpes cases (table 5). This finding is in line with a recent assessment of HSV-1 infection in Latin America and the Caribbean, indicating that HSV-1 is still mainly acquired orally in a context of slow transitioning epidemiology and limited contribution for HSV-1 in genital herpes.³⁰ While this finding is consistent with what is observed in sub-Saharan Africa and possibly the Middle East and North Africa,⁷⁷⁻⁷⁹ it contrasts with what is observed in North America, Europe, and Asia, where the role of HSV-1 in genital herpes has been increasing, and in some settings and populations even reaching the point of being the leading cause of this disease outcome.⁸⁰⁻⁸⁸

This study has limitations. HSV-2 epidemiological data were mainly available for the large countries of Latin America and the Caribbean region that constitute most of its population, but there were no data available for 27 out of the 47 (mostly small) countries constituting this part of the world. There were also less data for GUD and genital herpes than for seroprevalence. There was evidence for a small-study effect and somewhat varying seroprevalence by sampling method and response rate (table 4), which may have biased assessed seroprevalence. Studies differed in the employed diagnostic assays (online supplemental table S4), with possibly different sensitivity and specificity profiles.^{35 36 89} However, no effect was found for assay type on estimated seroprevalence (table 4). Measured seroprevalence can be affected by the choice of ELISA optical density cut-off for positivity.^{35 51 90 91} Studies were excluded if clearly an inappropriate cut-off was used. Still, variation in the use of optical density cutoffs across studies could have influenced estimated seroprevalence.^{35 51 90 91} There was high heterogeneity in seroprevalence (tables 2 and 3), but strikingly most of this heterogeneity was subsequently explained by the 'classic' attributes driving variation in HSV-2 seroprevalence, including sexual risk behaviour, sex and age (table 4). On balance, these limitations may have had inconsequential impact on the results and findings of the present study.

CONCLUSIONS

One in five adults in Latin America and the Caribbean is chronically infected with HSV-2, a higher level than that found in most other world regions, but seroprevalence is rapidly declining at a rate of about 2% per year, possibly reflecting changes in sexual behaviour and patterns, sexual networks or use of protective measures, such as condoms, over the last three decades. Despite this decline, HSV-2 infection persists as the aetiological cause of nearly half of GUD cases in this region, and almost all of genital herpes cases. These findings highlight the importance of HSV-2 seroprevalence monitoring and surveillance and demonstrate the need for prophylactic and therapeutic vaccines to alleviate this disease burden. They also advocate for increased momentum and support to the slowly progressing efforts of vaccine development.

Key messages

- Herpes simplex virus type 2 (HSV-2) infection is a highly prevalent STI worldwide, and results in a sizeable disease burden.
- One in five adults in Latin America and the Caribbean is chronically infected with HSV-2, a higher level than in other regions.
- However, this region is witnessing a rapidly declining seroprevalence at a rate of 2% per year.
- HSV-2 is the aetiological cause of nearly half of GUD cases and almost all of genital herpes cases in this region.
- The findings highlights the need for seroprevalence monitoring, GUD/genital herpes aetiological surveillance, and an HSV-2 vaccine to control transmission and alleviate the disease burden.

Author affiliations

¹Infectious Disease Epidemiology Group, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
²WHO Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
³Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
⁴Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, USA

Handling editor Jason J Ong

Acknowledgements The authors gratefully acknowledge Professor Emeritus Rhoda Ashley Morrow from the University of Washington, for her support in assessing the quality of study diagnostic methods. The authors are also grateful for Ms Adona Canlas for administrative support. This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors. The authors are also grateful for pilot funding by the Biomedical Research Programme and infrastructure support provided by the Biostatistics, Epidemiology, and Biomathematics Research Core, both at Weill Cornell Medicine in Qatar.

Contributors MH and HM conducted the systematic search, data extraction and data analysis. MH wrote the first draft of the paper. LJA-R conceived the study and led the data extraction and analyses and interpretation of the results. All authors contributed to drafting and revising the manuscript.

Funding This work was supported by the Qatar National Research Fund (NPRP 9-040-3-008) and through pilot funding by the Biomedical Research Program at Weill Cornell Medicine in Qatar.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Laith J Abu-Raddad http://orcid.org/0000-0003-0790-0506

REFERENCES

- James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ 2020;98:315–29.
- 2 Abu-Raddad LJ, Magaret AS, Celum C, *et al*. Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. *PLoS One* 2008;3:e2230.

Review

- 3 Benedetti J, Corey L, Ashley R. Recurrence rates in genital herpes after symptomatic first-episode infection. *Ann Intern Med* 1994;121:847–54.
- 4 Wald A, Krantz E, Selke S, *et al*. Knowledge of partners' genital herpes protects against herpes simplex virus type 2 acquisition. *J Infect Dis* 2006;194:42–52.
- 5 Wald A, Langenberg AG, Link K, et al. Effect of condoms on reducing the transmission of herpes simplex virus type 2 from men to women. JAMA 2001;285:3100–6.
- 6 Wald A, Zeh J, Selke S, *et al*. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. *N Engl J Med* 2000;342:844–50.
- 7 Mindel A, Marks C. Psychological symptoms associated with genital herpes virus infections: epidemiology and approaches to management. *CNS Drugs* 2005;19:303–12.
- 8 Mark H, Gilbert L, Nanda J. Psychosocial well-being and quality of life among women newly diagnosed with genital herpes. J Obstet Gynecol Neonatal Nurs 2009;38:320–6.
- 9 Gupta R, Warren T, Wald A. Genital herpes. *Lancet* 2007;370:2127–37.
- 10 Fisman DN. Health related quality of life in genital herpes: a pilot comparison of measures. Sex Transm Infect 2005;81:267–70.
- 11 Looker KJ, Magaret AS, May MT, et al. First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob Health 2017;5:e300–9.
- 12 Omori R, Nagelkerke N, Abu-Raddad LJ. HIV and herpes simplex virus type 2 epidemiological synergy: misguided observational evidence? A modelling study. Sex Transm Infect 2018;94:372–6.
- 13 Freeman EE, Weiss HA, Glynn JR, et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 2006;20:73–83.
- 14 Looker KJ, Elmes JAR, Gottlieb SL, *et al*. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. *Lancet Infect Dis* 2017;17:1303–16.
- 15 Looker KJ, Welton NJ, Sabin KM, et al. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: a population attributable fraction analysis using published epidemiological data. *Lancet Infect Dis* 2020;20:240–9.
- 16 United Nations. Transforming our world: the 2030 agenda for sustainable development, 2016.
- 17 World Health Organization. *Global health sector strategy on sexually transmitted infections 2016-2021: toward ending STIs*. World Health Organization, 2016.
- 18 Gottlieb SL, Giersing BK, Hickling J, et al. Meeting report: initial World Health organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics, March 2017. Vaccine 2019;37:7408–18.
- 19 Gottlieb SL, Giersing B, Boily M-C, *et al*. Modelling efforts needed to advance herpes simplex virus (HSV) vaccine development: key findings from the world Health organization consultation on HSV vaccine impact modelling. *Vaccine* 2019;37:7336–45.
- 20 Fanfair RN, Zaidi A, Taylor LD, et al. Trends in seroprevalence of herpes simplex virus type 2 among non-Hispanic blacks and non-Hispanic whites aged 14 to 49 years-United States, 1988 to 2010. Sex Transm Dis 2013;40:860–4.
- 21 Douglas JM, Berman SM. Screening for HSV-2 infection in STD clinics and beyond: a few answers but more questions. *Sex Transm Dis* 2009;36:729–31.
- 22 Johnston C, Corey L. Current concepts for genital herpes simplex virus infection: diagnostics and pathogenesis of genital tract shedding. *Clin Microbiol Rev* 2016;29:149–61.
- 23 Giersing BK, Vekemans J, Nava S, *et al*. Report from the world Health organization's third product development for vaccines Advisory Committee (PDVAC) meeting, Geneva, 8-10th June 2016. *Vaccine* 2019;37:7315–27.
- 24 Gottlieb SL, Deal CD, Giersing B, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine 2016;34:2939–47.
- 25 World Health Organization. World Health organization preferred product characteristics for herpes 1 simplex virus vaccines, 2018.
- 26 Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Epidemiological impact of novel preventive and therapeutic HSV-2 vaccination in the United States: mathematical modeling analyses. *Vaccines* 2020;8. doi:10.3390/vaccines8030366. [Epub ahead of print: 08 Jul 2020].
- 27 World Health Organization. World Health Organization preferred product characteristics for herpes 2 simplex virus vaccines, 2019. Available: https://www.who. int/immunization/research/ppc-tpp/HSV_Vaccine_PPCs_for_Public_Comment.pdf [Accessed 3 Feb 2020].
- 28 Spicknall IH, Looker KJ, Gottlieb SL, *et al*. Review of mathematical models of HSV-2 vaccination: implications for vaccine development. *Vaccine* 2019;37:7396–407.
- 29 Harfouche M, Chemaitelly H, Abu-Raddad LJ. Herpes simplex virus type 1 epidemiology in Africa: systematic review, meta-analyses, and meta-regressions. J Infect 2019;79:289–99.
- 30 Sukik L, Alyafei M, Harfouche M, *et al*. Herpes simplex virus type 1 epidemiology in Latin America and the Caribbean: systematic review and meta-analytics. *PLoS One* 2019;14:e0215487.

- 31 Higgins J, Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons, 2011.
- 32 Moher D, Liberati A, Tetzlaff J, *et al*. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6:e1000097.
- 33 World Health Organization. WHO regional offices, 2017. Available: http://www.who. int/about/regions/en/ [Accessed Sep 2019].
- 34 United Nations-Department of Economic and Social Affairs. Standard country or area codes for statistical use. Available: https://unstats.un.org/unsd/methodology/m49/ [Accessed Apr 2020].
- 35 Ashley-Morrow R, Nollkamper J, Robinson NJ, et al. Performance of focus ELISA tests for herpes simplex virus type 1 (HSV-1) and HSV-2 antibodies among women in ten diverse geographical locations. Clin Microbiol Infect 2004;10:530–6.
- 36 Ashley RL. Performance and use of HSV type-specific serology test kits. *Herpes* 2002;9:38–45.
- 37 Borenstein MH, Higgins JPT, Rothstein HR. Introduction to meta-analysis Chichester. UK: John Wiley & Sons, Ltd, 2009.
- 38 Freeman MF, Tukey JW. Transformations related to the angular and the square root. *Ann Math Stat* 1950;21:607–11.
- 39 RStudio Team. *RStudio: integrated development for R*. Boston, MA: RStudio, Inc, 2015. http://www.rstudio.com/
- 40 Schwarzer G. Meta: an R package for meta-analysis. *R news* 2007;7:40–5.
- 41 StataCorp. *Stata statistical software: release 14*. College Station, TX: StataCorp LP, 2015.
- 42 Harbord RM, Higgins JPT. Meta-regression in Stata. *Stata Journal* 2008;8:493–519.
- 43 Balachandran N, Frame B, Chernesky M, et al. Identification and typing of herpes simplex viruses with monoclonal antibodies. J Clin Microbiol 1982;16:205–8.
- 44 HIV, STD and risk behaviors among female sex worker in El Salvador. Poster CDC0622. International AIDS Conference, Vienna, Austria, 2010.
- 45 do Nascimento MC, Sumita LM, de Souza VA, *et al*. Detection and direct typing of herpes simplex virus in perianal ulcers of patients with AIDS by PCR. *J Clin Microbiol* 1998;36:848–9.
- 46 Morales-Miranda S, Paredes M, Arambu N. HIV, STD and risk behaviors among men who have sex with men, female sex workers, and indigenous Garífuna population in Honduras. WEAX0305 In: International AIDS Conference Mexico, Mexico, 2008.
- 47 Sánchez J, Gotuzzo E, Escamilla J, *et al.* Sexually transmitted infections in female sex workers: reduced by condom use but not by a limited periodic examination program. *Sex Transm Dis* 1998;25:82–9.
- 48 Smith JS, Herrero R, Bosetti C, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst 2002;94:1604–13.
- 49 Vaccarella S, Franceschi S, Herrero R, *et al.* Sexual behavior, condom use, and human papillomavirus: pooled analysis of the IARC human papillomavirus prevalence surveys. *Cancer Epidemiol Biomarkers Prev* 2006;15:326–33.
- 50 Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. *J Infect Dis* 2002;186(Suppl 1):S3–28.
- 51 Dargham SR, Nasrallah GK, Al-Absi ES, *et al.* Herpes simplex virus type 2 seroprevalence among different national populations of middle East and North African men. *Sex Transm Dis* 2018;45:482–7.
- 52 Weiss H. Epidemiology of herpes simplex virus type 2 infection in the developing world. *Herpes* 2004;11(Suppl 1):24A–35.
- 53 Xu F, Sternberg MR, Kottiri BJ, *et al*. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. *JAMA* 2006;296:964–73.
- 54 McQuillan G, Kruszon-Moran D, Flagg EW, et al. Prevalence of herpes simplex virus type 1 and type 2 in persons aged 14-49: United States, 2015-2016. NCHS Data Brief 2018;304:1–8.
- 55 Chemaitelly H, Nagelkerke N, Omori R, *et al*. Characterizing herpes simplex virus type 1 and type 2 seroprevalence declines and epidemiological association in the United States. *PLoS One* 2019;14:e0214151.
- 56 Ayoub HH, Amara I, Awad SF. Analytic characterization of the herpes simplex virus type 2 epidemic in the United States, 1950-2050. under review.
- 57 Abu-Raddad LJ, Schiffer JT, Ashley R, *et al*. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the middle East and North Africa. *Epidemics* 2010;2:173–82.
- 58 Omori R, Abu-Raddad LJ. Sexual network drivers of HIV and herpes simplex virus type 2 transmission. *AIDS* 2017;31:1721–32.
- 59 van de Laar MJ, Termorshuizen F, Slomka MJ, et al. Prevalence and correlates of herpes simplex virus type 2 infection: evaluation of behavioural risk factors. Int J Epidemiol 1998;27:127–34.
- 60 Cowan FM, Johnson AM, Ashley R, *et al*. Antibody to herpes simplex virus type 2 as serological marker of sexual lifestyle in populations. *BMJ* 1994;309:1325–9.
- 61 Obasi A, Mosha F, Quigley M, *et al*. Antibody to herpes simplex virus type 2 as a marker of sexual risk behavior in rural Tanzania. *J Infect Dis* 1999;179:16–24.
- 62 Kouyoumjian SP, Heijnen M, Chaabna K, et al. Global population-level association between herpes simplex virus 2 prevalence and HIV prevalence. AIDS 2018;32:1343–52.
- 63 Hallett TB, Gregson S, Mugurungi O, *et al.* Assessing evidence for behaviour change affecting the course of HIV epidemics: a new mathematical modelling approach and application to data from Zimbabwe. *Epidemics* 2009;1:108–17.

Review

- 64 Hallett TB, Aberle-Grasse J, Bello G, *et al.* Declines in HIV prevalence can be associated with changing sexual behaviour in Uganda, urban Kenya, Zimbabwe, and urban Haiti. *Sex Transm Infect* 2006;82(Suppl 1):i1–8.
- 65 Kilian AH, Gregson S, Ndyanabangi B, *et al.* Reductions in risk behaviour provide the most consistent explanation for declining HIV-1 prevalence in Uganda. *AIDS* 1999;13:391–8.
- 66 Awad SF, Abu-Raddad LJ. Could there have been substantial declines in sexual risk behavior across sub-Saharan Africa in the mid-1990s? *Epidemics* 2014;8:9–17.
- 67 Wijesooriya NS, Rochat RW, Kamb ML, *et al*. Global burden of maternal and congenital syphilis in 2008 and 2012: a health systems modelling study. *Lancet Glob Health* 2016;4:e525–33.
- 68 World Health Organization. *Global health sector strategy on sexually transmitted infections 2016–2021: towards ending STIs*. Geneva, 2016.
- 69 Gayet C, Juarez F, Bozon M. Sexual practices of Latin America and the Caribbean. International handbook on the demography of sexuality: Springer, 2013: 67–90.
- 70 UNAIDS. Global HIV & AIDS statistics 2019 fact sheet 2019. Available: https:// www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf [Accessed Mar 2020].
- 71 Smolak A, Rowley J, Nagelkerke N, et al. Trends and predictors of syphilis prevalence in the general population: global pooled analyses of 1103 prevalence measures including 136 million syphilis tests. *Clin Infect Dis* 2018;66:1184–91.
- 72 Wald A, Corey L, Arvin A. Persistence in the population: epidemiology, transmission. In: Arvin A, Fiume GC, Mocarski E, et al, eds. Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge: Cambridge University Press, 2007.
- 73 Looker KJ, Magaret AS, Turner KME, et al. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One 2015;10:e114989.
- 74 Bradley H, Markowitz LE, Gibson T, *et al*. Seroprevalence of herpes simplex virus types 1 and 2--United States, 1999-2010. *J Infect Dis* 2014;209:325–33.
- 75 Dévieux JG, Rosenberg R, Saint-Jean G, *et al*. The continuing challenge of reducing HIV risk among Haitian youth: the need for intervention. *J Int Assoc Provid AIDS Care* 2015;14:217–23.
- 76 Korenromp EL, Mahiané SG, Nagelkerke N, et al. Syphilis prevalence trends in adult women in 132 countries - estimations using the Spectrum Sexually Transmitted Infections model. Sci Rep 2018;8:11503.
- 77 Nasrallah GK, Dargham SR, Mohammed LI, et al. Estimating seroprevalence of herpes simplex virus type 1 among different middle East and North African male populations residing in Qatar. J Med Virol 2018;90:184–90.
- 78 Chaabane S, Harfouche M, Chemaitelly H, et al. Herpes simplex virus type 1 epidemiology in the middle East and North Africa: systematic review, meta-analyses, and meta-regressions. Sci Rep 2019;9:1–11.

- 79 Harfouche M, Chemaitelly H, Abu-Raddad LJ. Herpes simplex virus type 1 epidemiology in Africa: systematic review, meta-analyses, and meta-regressions. J Infect 2019;79:289–99.
- 80 Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Characterizing the transitioning epidemiology of herpes simplex virus type 1 in the USA: model-based predictions. *BMC Med* 2019;17:57.
- 81 Bernstein DI, Bellamy AR, Hook EW, et al. Epidemiology, clinical presentation, and antibody response to primary infection with herpes simplex virus type 1 and type 2 in young women. Clin Infect Dis 2013;56:344–51.
- 82 Löwhagen GB, Tunbäck P, Andersson K, et al. First episodes of genital herpes in a Swedish STD population: a study of epidemiology and transmission by the use of herpes simplex virus (HSV) typing and specific serology. *Sex Transm Infect* 2000;76:179–82.
- 83 Nilsen A, Myrmel H. Changing trends in genital herpes simplex virus infection in Bergen, Norway. Acta Obstet Gynecol Scand 2000;79:693–6.
- 84 Samra Z, Scherf E, Dan M. Herpes simplex virus type 1 is the prevailing cause of genital herpes in the Tel Aviv area, Israel. Sex Transm Dis 2003;30:794–6.
- 85 Gilbert M, Li X, Petric M, et al. Using centralized laboratory data to monitor trends in herpes simplex virus type 1 and 2 infection in British Columbia and the changing etiology of genital herpes. Can J Public Health 2011;102:225–9.
- 86 Roberts CM, Pfister JR, Spear SJ. Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students. *Sex Transm Dis* 2003;30:797–800.
- 87 Khadr L, Harfouche M, Omori R, et al. The epidemiology of herpes simplex virus type 1 in Asia: systematic review, meta-analyses, and meta-regressions. *Clinical Infectious Diseases* 2019;68:757–72.
- 88 Yousuf W, Ibrahim H, Harfouche M, et al. Herpes simplex virus type 1 in Europe: systematic review, meta-analyses and meta-regressions. BMJ Glob Health 2020;5:e002388.
- 89 Nasrallah GK, Dargham SR, Sahara AS, et al. Performance of four diagnostic assays for detecting herpes simplex virus type 2 antibodies in the middle East and North Africa. J Clin Virol 2019;111:33–8.
- 90 Delany-Moretlwe S, Jentsch U, Weiss H, et al. Comparison of focus HerpesSelect and Kalon HSV-2 gG2 ELISA serological assays to detect herpes simplex virus type 2 antibodies in a South African population. Sex Transm Infect 2010;86:46–50.
- 91 Mujugira A, Morrow RA, Celum C, et al. Performance of the focus HerpeSelect-2 enzyme immunoassay for the detection of herpes simplex virus type 2 antibodies in seven African countries. Sex Transm Infect 2011;87:238–41.

Web extra material

Epidemiology of herpes simplex virus type 2 in Latin America and

the Caribbean: systematic review, meta-analyses, and meta-

regressions

Manale Harfouche MPH^{a,b}, Haifa Maalmi PhD^{a,c}, and Laith J. Abu-Raddad PhD^{a,b,d}

^a Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar

^b World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar

^cInstitute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Dusseldorf, Dusseldorf, Germany;

^d Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, US

Table of Contents

Table S1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist. ¹ 3
Table S2. Data sources and search criteria for systematically reviewing HSV-2 epidemiology inLatin America and the Caribbean.5
Box S1. Definitions of population type classifications ^a
Table S3. Studies reporting HSV-2 seroconversion rate or incidence rate in Latin America and the Caribbean. 8
Table S4. Studies reporting HSV-2 seroprevalence in Latin America and the Caribbean by population type
Figure S1. Forest plots presenting the outcomes of the pooled mean herpes simplex virus type 2 (HSV-2) seroprevalence among the different at risk populations in Latin America and the Caribbean. 13
A) General populations
B) Intermediate-risk populations
C) High-risk populations
D) STI clinic attendees and symptomatic populations (mixed women and men)
F) HIV positive individuals and individuals in HIV discordant couples
G) Other populations
Table S5. Univariable and multivariable meta-regression analyses for HSV-2 seroprevalenceamong the different at risk populations in Latin America and the Caribbean using each ofcountry's income and country <i>instead</i> of subregion in the multivariable meta-regression
Table S6. Univariable and multivariable meta-regression analyses for HSV-2 seroprevalenceamong the different at-risk populations in Latin America and the Caribbean using the year ofdata collection as the temporal variable. The analysis using year of publication as the temporalvariable is found in Table 3 of main text.24
Table S7. Studies reporting proportions of HSV-2 virus isolation in clinically-diagnosed genital ulcer disease and in clinically-diagnosed genital herpes in Latin America and the Caribbean 26
Figure S2. Forest plots presenting the outcomes of the pooled mean proportions of HSV-2 virus isolation in clinically-diagnosed genital ulcer disease and in clinically-diagnosed genital herpes in Latin America and the Caribbean
A) Patients with GUD
B) Patients with genital herpes
Table S8. Summary of the precision assessment and risk of bias assessment for the studiesreporting HSV-2 seroprevalence in Latin America and the Caribbean.29
References

Reported in main text # Checklist item Section/topic on Title Title Identify the report as a systematic review, meta-analysis, or both. p.1 Abstract Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, p. 2 participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. Introduction Rationale 3 Describe the rationale for the review in the context of what is already known. p. 5-6 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, Objectives p. 5-6 outcomes, and study design (PICOS). Methods Protocol and 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide NA registration information including registration number. registration Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, Eligibility criteria 6 p. 6; Box 1 language, publication status) used as criteria for eligibility, giving rationale. Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify Information sources 7 p. 6; Box 1 additional studies) in the search and date last searched. 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be Table S2 Search repeated. Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, p. 6; Box 1 included in the meta-analysis). Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes Data collection 10 p. 6; Box 1 process for obtaining and confirming data from investigators. List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 11 Data items Box 1 simplifications made. Describe methods used for assessing risk of bias of individual studies (including specification of whether this was Risk of bias in 12 p. 7; Box 1 done at the study or outcome level), and how this information is to be used in any data synthesis. individual studies 13 State the principal summary measures (e.g., risk ratio, difference in means). p. 7; Box 1 Summary measures Describe the methods of handling data and combining results of studies, if done, including measures of consistency Synthesis of results 14 p. 7; Box 1 $(e.g., I^2)$ for each meta-analysis. Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective Risk of bias across 15 p. 7; Box 1 reporting within studies). studies 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating Additional analyses p. 7; Box 1

Table S1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist.¹

		which were pre-specified.	
Results			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	p. 7-8; Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	p. 8 and p. 11; Tables S3, S4, and S7
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	p. 11; Table S8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	p. 7-11; Tables 1, 2, and 3; Figures S1 and S2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	p. 9-10; Tables 1, 2, and 4; Figures S1 and S2
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	p. 11; Table S8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	p. 9-10; Table 3; Tables S5 and S6
Discussion			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	p. 12-14
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	p. 14
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	p. 14-15
funding			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	p. 3

Abbreviations: NA = Not applicable, p = page

Table S2. Data sources and search criteria for systematically reviewing HSV-2 epidemiology in Latin America and the Caribbean.

PubMed (last searched: March 12, 2020)

(Simplexvirus[MeSH] OR Herpes Simplex[MeSH] OR Herpes Genitalis[MeSH] OR Herpes Hominis[Text] OR HSV type-2[Text] OR HSV type 2[Text] OR HSV2[Text] OR HSV-2[Text] OR HSV [Text] OR Human herpes virus[Text] OR Herpes simplex virus type 2[Text] OR Herpes simplex virus type-2[Text] OR herpes simplex virus 2[Text] OR herpes simplex virus-2[Text] OR herpes simplex type 2[Text] OR herpes simplex type-2[Text] OR herpes simplex 2[Text] OR herpes simplex-2[Text] OR Herpesvirus type 2[Text] OR Herpesvirus type-2[Text] OR Herpesvirus 2[Text] OR Herpesvirus-2[Text] OR Herpes virus type 2[Text] OR Herpes virus type-[Text] OR Herpes virus [Text] OR Herpes virus-2[Text] OR genital herpes[Text] OR Herpes Genitalis[Text] OR Stomatitis Herpetic[Text] OR Herpes Labialis[Text]) AND ("Latin America" [MeSH] OR "Central America" [MeSH] OR "South America" [Mesh] OR "Caribbean Region" [MeSH] OR "Mexico" [MeSH]) OR (Anguilla*[Text] OR Aruba*[Text] OR Antigua and Barbuda[Text] OR Argentin*[Text] OR Bahamas*[Text] OR Barbados*[Text] OR Beliz*[Text] OR Bermuda*[Text] OR Bolivia*[Text] OR Brazil*[text] OR "British Virgin Islands" [Text] OR Latin America [Text] OR Latin American* [Text] OR Caribbean* [Text] OR Cayman Islands[Text] OR Chile*[Text] OR Colombia*[Text] OR Costa Rica*[Text] OR Cuba*[Text] OR Curacao*[Text] OR Central America[Text] OR Central American*[text] OR Dominica*[Text] OR Dominica republic[Text] OR Ecuador*[Text] OR El Salvador[Text] OR French Guiana[Text] OR Grenad*[Text] OR Guadeloup*[Text] OR Guatemal*[Text] OR Guyan*[Text] OR Haiti*[Text] OR Honduras*[Text] OR Jamaic*[Text] OR Martiniqu*[Text] OR Montserrat*[Text] OR Mexic*[Text] OR Nicaragua*[Text] OR Panama*[Text] OR Paraguay*[Text] OR Peru*[Text] OR Puerto Rico[Text] OR Puerto Rica*[text] OR Saint Kitts and Nevis[Text] OR Saint Lucia[Text] OR Saint Vincent and the Grenadines[Text] OR Suriname*[Text] OR Saint Martin[Text] OR Sint Maarten[Text] OR South America[Text] OR South American*[Text] OR Trinidad and Tobago[Text] OR Turks and Caicos[Text] OR Uruguay*[Text] OR United States Virgin Islands[Text] OR Venezuel*[Text])

Embase (last searched: March 12, 2020)

(exp Herpes simplex/ or exp Herpesviridae/) OR (Herpes simplex or Herpes simplex virus or HSV type-2 or HSV type 2 or HSV2 or HSV-2 or HSV 2 or human herpes virus or Herpes simplex virus type 2 or Herpes simplex virus type-2 or herpes simplex virus 2 or herpes simplex virus-2 or herpes simplex type 2 or herpes simplex type-2 or herpes simplex 2 or herpes simplex-2 or Herpesvirus type 2 or Herpesvirus type-2 or Herpesvirus 2 or Herpesvirus-2 or Herpes virus type 2 or Herpes virus type-2 or Herpes virus 2 or Herpes virus-2 or genital herpes or Herpes Genitalis or herpes labialis or herpetic stomatitis).mp.) AND (exp "Antigua and Barbuda"/ or exp Argentina/ or exp Aruba/ or exp Bahamas/ or exp Barbados/ or exp Belize/ or exp Bolivia/ or exp Brazil/ or exp "Virgin Islands (British)"/ or exp Cayman Islands/ or exp Chile/ or exp Colombia/ or exp Costa Rica/ or exp Cuba/ or exp Curacao/ or exp Dominica/ or exp Dominican Republic/ or exp Ecuador/ or exp El Salvador/ or exp French Guiana/ or exp Grenada/ or exp Guadeloupe/ or exp Guatemala/ or exp Guyana/ or exp Haiti/ or exp Honduras/ or exp Jamaica/ or exp Martinique/ or exp Mexico/ or exp Montserrat/ or exp Nicaragua/ or exp Panama/ or exp Paraguay/ or exp Peru/ or exp Puerto Rico/ or exp Saint Lucia/ or exp "saint martin (dutch)"/ or exp "saint martin (french)"/ or exp Suriname/) or (exp "Trinidad and Tobago"/ or exp "Virgin Islands (U.S.)"/ or exp Uruguay/ or exp Venezuela/ or exp South America/ or exp Central America/ or exp Caribbean/ or exp "Caribbean (person)"/ or exp Caribbean Netherlands/ or exp Caribbean Islands/ or exp South American/ or exp Central American/ or exp Latin America/) or (Antigua or Argentina or Argentinian or Aruba or Aruban or Bahamas or Belize or belizian or Bolivia or Bolivian or Brazil or Brazilian or British virgin islands or Cayman islands or Chile or Chilean or Colombia or Colombian or Costa Rica or costa Rican or Cuba or Cuban or Curacao or Dominica or Dominican or Dominican republic or Ecuador or Ecuadorian or el Salvador or el Salvadorian).mp. or (French Guiana or Grenada or Guadeloupe or Guatemala or Guatemalan or Guyana or Haitian or Honduras or Honduran or Jamaica or Jamaican or Martinique or Mexico or Mexican or Montserrat or Nicaragua or Nicaraguan or panama or Panamanian or Paraguay or Paraguayans or Peru or Peruvian* or Puerto Rico or Puerto Ricans or saint Lucia or saint Lucian or Latin America* or south American* or central American*).mp. or ((Turks and caicos) or (saint Vincents and the grenadines) or (saint kitts and the nevis)).mp. LILACS (last searched: March 12, 2020)

((tw:(herpes)) OR (tw:(herpesvirus 2)) OR (tw:(herpes simplex)) OR (tw:(hsv type-2)) OR (tw:(hsv type 1)) OR (tw:(hsv2)) OR (tw:(hsv2)) OR (tw:(hsv2)) OR (tw:(hsv2)) OR (tw:(herpes simplex virus type 2)) OR (tw:(herpes simplex virus 2)) OR (tw:(herpes simplex virus 2)) OR (tw:(herpes simplex virus 2)) OR (tw:(herpes simplex type 2)) OR (tw:(herpes simplex type 2)) OR (tw:(herpes virus 2)) OR (

Abbreviations: HSV-2 = Herpes simplex virus type 2.

Box S1. Definitions of population type classifications^a.

- 1. General populations (populations at low risk): these include populations at lower risk of exposure to HSV-2, such as antenatal clinic attendees, blood donors, and pregnant women, among others.
- 2. Intermediate-risk populations: these include populations who presumably have frequent sexual contacts with populations engaging in high sexual risk behavior, and have therefore a higher risk of exposure to HSV-2 than the general population. These comprise prisoners, people who inject drugs, and truck drivers, among others.
- 3. High-risk populations: these include populations at high risk of exposure to HSV-2 as a consequence of specific sexual risk behaviors such as female sex workers, men who have sex with men, male sex workers, and transgender populations, among others.
- 4. HIV positive individuals and individuals in HIV discordant couples: these include populations who are HIV positive or are in a spousal relationship with an HIV positive individual.
- 5. STI clinic attendees and symptomatic populations: these include patients attending STI clinics, or have clinical manifestations related to an STI.
- 6. **Other populations**: these include populations not satisfying above definitions, or populations with an undetermined risk of acquiring HSV-2 infection such as cervical cancer patients and their spouses.

These population types were selected based on our understanding of HIV/STI epidemiology and the variability of risk of exposure in different population types, as informed by existing literature on HIV and STIs.2

Abbreviations: HSV-2 Herpes simplex virus type 2, STI = Sexually transmitted infection, HIV = Human immunodeficiency virus.

Table S3. Studies reporting HSV-2 ser	oconversion rate or incidence rate	e in Latin America and th	ne Caribbean.
---------------------------------------	------------------------------------	---------------------------	---------------

Author, year	Year(s) of data collection	Country	Original study design	Population characteristics	HSV-2 serological assay	Sample size	Follow-up duration	Person- years of follow-up	HSV-2 Seroconversion rate (%)	HSV-2 Incidence rate (per 100 person- years)
General populations		-				-	-	-	-	-
Lupi, 2011 ⁷	1996-97	Brazil	Cohort	Blood donors	ELISA	110	1 year	-	2.0	-
Sánchez-Alemán, 2010 ⁸	2001-05	Mexico	Cohort	Female students	ELISA	376	-	466.2	5.6	4.5
Sánchez-Alemán, 2010 ⁸	2001-05	Mexico	Cohort	Male students	ELISA	128	-	203.0	5.5	4.5
Intermediate-risk population	ons									
Konda, 2013 9	2001-03	Peru	RCT	Men engaging in risky behaviors	ELISA	1,741	2 years	-	3.4	-
High-risk populations										
Castillo, 2015 ¹⁰	2009-11	Peru	RCT	Transgender women	ELISA	40	18 months	-	-	12.2
Castillo, 2015 ¹⁰	2009-11	Peru	RCT	MSM	ELISA	217	18 months	-	-	17.9
Konda, 2013 9	2001-03	Peru	RCT	Bisexual men	ELISA	311	2 years	-	4.6	-
Konda, 20139	2001-03	Peru	RCT	MSM	ELISA	93	2 years	-	13.4	-
Lupi, 2011 7	1996-97	Brazil	Cohort	MSM	ELISA	103	1 year	-	8.00	-
Sanchez, 2009 ¹¹	1998-00	Peru	Cohort	MSM	WB	55	335 days	-	-	10.4
Sanchez, 2009 ¹¹	1998-00	Peru	Cohort	HIV negative MSM	WB	42	335 days	-	11.9	-
HIV positive individuals an	d individuals i	n HIV discor	dant couples							
Sanchez, 2009 ¹¹	1998-00	Peru	Cohort	HIV positive MSM	WB	13	335 days	-	30.8	-
Yanez Alvarez, 2011 ¹²	2003-05	Mexico	Cohort	People living with HIV	ELISA	131	1.5 years	174.0	51.1	38.5

Abbreviations: ELISA = Enzyme-linked immunosorbent assay, HIV = Human immunodeficiency virus, HSV-2 = Herpes simplex virus type 2, MSM = Men who have sex with men, RCT = Randomized controlled trial, WB = Western blot.

Table S4. Studies reporting HSV-2 seroprevalence in Latin America and the Caribbean by population type.

Author, year	Year(s) of data	Country	Study site	Original study	Sampling	Population	HSV-2 serological	Sample	HSV-2 seroprevalence
	collection		-	design*	method		assay	size	(%)
General populations									
Abraham, 2003 ¹³	2000	Mexico	Community	CS	CRS	Male students	WB	517	4.1
Abraham, 2003 ¹³	2000	Mexico	Community	CS	CRS	Female students	WB	381	7.9
Alberts, 2013 ¹⁴	2005-09	Mexico	Community	CS	Conv	Mexican men	ELISA	1,312	8.8
Alberts, 2013 ¹⁴	2005-09	Brazil	Community	CS	Conv	Brazilian men	ELISA	1,388	38.4
Almeida, 2017	2011-14	Brazil	Outpatient clinic	CS	Conv	Patients with benign nodules	ELISA	83	28.0
Ashley-Morrow, 2004 ¹⁶	2000-01	Mexico	Community	CS	Conv	Mexican women	WB	94	44.6
Ashley-Morrow, 2004 ¹⁶	2000-01	Costa Rica	Community	CS	Conv	Costa Rican women	WB	94	42.5
Ashley-Morrow, 2004 ¹⁶	2000-01	Argentina	Community	CS	Conv	Argentinian women	WB	97	39.1
Boulos, 1992 ¹⁷	1986-88	Haiti	Community	CS	Conv	Pregnant Haitian women	ELISA	89	54.0
Cárcamo, 2012 ¹⁸	2002	Peru	Community	CS	CRS	18-29 years old women	ELISA	1,486	13.6
Cárcamo, 2012 ¹⁸	2002	Peru	Community	CS	CRS	18-29 years old men	ELISA	1,176	13.5
Carvalho, 1999 ¹⁹	1993-97	Brazil	Outpatient clinic	CS	Conv	Pregnant women	WB	102	22.6
Carvalho, 1999 ¹⁹	1993-97	Brazil	Community	CS	Conv	College students	WB	101	6.9
Clark, 2008 20	2003-04	Peru	Community	CS	Conv	Healthy men	ELISA	1,797	16.0
Clemens, 2010 ²¹	1996-97	Brazil	Community	CS	CRS	General population in Brazil	ELISA	1,090	11.3
Conde-Glez, 2013 ²²	2005-06	Mexico	Community	CS	MSCS	General population in Mexico	ELISA	3,616	9.9
Conde-Gonzalez, 2003 ²³	2000-00	Mexico	Community	CS	CRS	Women from the general population	WB	730	29.3
Cowan, 2003 24	1992-00	Brazil	Community	CS	Conv	Male blood donors	ELISA	398	25.9
Cowan, 2003 24	1992-00	Brazil	Community	CS	Conv	Female blood donors	ELISA	84	42.9
Cowan, 2003 24	1992-00	Brazil	Community	CS	Conv	Antenatal clinic attendees	ELISA	399	29.3
Cowan, 2003 24	1992-00	Brazil	Community	CS	Conv	1-15 years old children	ELISA	697	2.4
Da-Rosa santos, 1996 ²⁵	1994-94	Brazil	Community	CS	Conv	Blood donors	ELISA	155	29.1
De Sanjose, 1994 ²⁶	1985-88	Colombia	Community	CC	RS	Healthy women	ELISA	237	49.8
Domercant, 2017 ²⁷	2012-12	Haiti	Outpatient clinic	CS	Conv	Pregnant women	ELISA	784	30.5
Gabster, 2019 28	2018-18	Panama	Community	CS	CRS	Female students	ELISA	273	10.2
Gabster, 2019 28	2018-18	Panama	Community	CS	CRS	Male student	ELISA	286	15.7
Goncalez, 2006 ²⁹	2004-04	Brazil	Community	CS	CRS	Blood donors	ELISA	1,600	15.6
Goncalez, 2015 30	2012-13	Brazil	Community	RCT	CRS	Blood donors in the intervention arm	ELISA	6,298	10.4
Goncalez, 2015 30	2012-13	Brazil	Community	RCT	CRS	Blood donors in the control arm	ELISA	5,569	11.1
Gutierrez, 2006 ³¹	-	Mexico	Community	CS	MSCS	Mexican adolescents in poor urban areas	ELISA	753	12.0
Gutierrez, 2007 ³²	2002-03	Mexico	Community	CS	CRS	School students	ELISA	1,429	18.9
Herrera-Ortiz, 2013 33	2006-09	Mexico	Outpatient clinic	CS	Conv	Pregnant women	ELISA	2,300	14.5
Juarez-Figueroa, 1997 34	1992-92	Mexico	Community	CS	Conv	Men getting tested for HIV	WB	538	28.8
Konda, 2005 35	2000-02	Peru	Community	CS	CRS	Women from the general population	EIA	965	20.0
Konda, 2005 35	2000-02	Peru	Community	CS	CRS	Men from the general population	EIA	670	7.0
Lazcano-Ponce, 2001 36	1994-96	Mexico	Community	CS	CRS	Women from Mexico	WB	730	29.8
Levett, 2005 37	-	Barbados	Outpatient clinic	CS	Conv	Pregnant women	ELISA	122	40.2
Levett, 2005 37	-	Barbados	Community	CS	Conv	Blood donors	ELISA	184	34.2
Lupi, 2011 7	1996-97	Brazil	Community	Cohort	Conv	Male blood donors	ELISA	155	29.0
Moreira, 2018 38	2015-16	Brazil	Hospital	CC	Conv	Mothers of children without congenital malformation	ELISA	160	47.1
Moreira, 2018 38	2015-16	Brazil	Hospital	CC	Conv	Mothers of children with congenital malformation	ELISA	32	28.1
Munoz, 1995 39	1985-88	Colombia	Outpatient clinic	CC	Conv	Healthy women	ELISA	141	67.3
Munoz, 1995 39	1985-88	Colombia	Outpatient clinic	CC	Conv	Healthy men	ELISA	126	64.3
Munoz, 1995 39	1985-88	Colombia	Outpatient clinic	CC	Conv	Healthy men	ELISA	73	56.2
Nascimento, 2007 40	1995-03	Brazil	Outpatient clinic	CS	Conv	1-2 years old children	WB	249	1.6
Nascimento, 2008 ⁴¹	2003-03	Brazil	Community	CS	Conv	Blood donors in Brazil	ELISA	3.493	26.4
Nascimento, 2009 ⁴²	2003-04	Brazil	Community	CS	Conv	Non-Amerindian population	ELISA	181	29.8
Nascimento, 2009 ⁴²	2003-04	Brazil	Community	CS	Conv	Blood donors	ELISA	1,121	35.8

Nascimento, 2009 42	2003-04	Brazil	Community	CS	Conv	Amerindian population	ELISA	339	7.4
Oberle, 1989 43	1984-85	Costa Rica	Community	CS	CRS	Healthy women	Monoclonal antibody	766	39.4
Patnaik, 2007 ⁴⁴	1995-97	Peru	Hospital	CS	Conv	Middle-aged women in Peru	WB	171	35.7
Patnaik, 2007 ⁴⁴	1995-97	Colombia	Community	CS	Conv	Middle-aged women in Colombia	WB	65	56.9
Patzi-Churqui, 2020 ⁴⁵	2015-19	Bolivia	Community	CS	Conv	Healthy women	WB	389	53.0
Paz-Bailey, 2009 ⁴⁶	2006-06	Honduras	Community	CS	MSCS	Honduran-Garifuna participants	ELISA	791	51.1
Rodriguez, 2003 ⁴⁷	1993-94	Costa Rica	Community	Cohort	CRS	Women from the Guanacaste cohort	ELISA	1,100	38.4
Sanchez, 1996 ⁴⁸	1991-92	Peru	Outpatient clinic	CS	CRS	>18 years old women	WB	201	21.5
Sanchez, 1996 ⁴⁸	1991-92	Peru	Outpatient clinic	CS	CRS	>18 years old men	WB	281	7.7
Sanchez-Aleman, 2005 49	2000-01	Mexico	Community	CS	Conv	Students from Mexico	WB	340	5.9
Sánchez-Alemán, 2008 50	2001-03	Mexico	Community	CS	Conv	University students	WB	711	4.0
Sánchez-Alemán, 2010 ⁸	2003-05	Mexico	Community	CS	Conv	University students	ELISA	592	2.2
Sierra, 2011 51	2002-03	Colombia	Community	CS	CRS	Sexual active women	ELISA	869	19.1
Sierra, 2011 51	2002-03	Colombia	Community	CS	CRS	Not sexually active women	ELISA	57	1.7
Smith, 2001 52	1990-91	Brazil	Outpatient clinic	CC	Conv	Middle-aged women	ELISA	181	42.0
Smith, 2002 53	-	Peru	Hospital	CC	Conv	Peruvian women	WB	171	35.7
Smith, 2002 53	-	Colombia	Community	CC	Conv	Colombian women	WB	65	56.9
Uribe-Salas, 2009 ⁵⁴	2000-00	Mexico	Community	CS	MSCS	Adults in Mexico	ELISA	6,156	17.3
Vaccarella, 2006 55	1997-00	Argentina	Community	CS	RS	Healthy women	ELISA	907	37.0
Weinberg, 1993 56	1988-89	Brazil	Hospital	CS	Conv	Pregnant women of low socioeconomic status	WB	60	46.0
Weinberg, 1993 56	1988-89	Brazil	Hospital	CS	Conv	Pregnant women of middle socioeconomic status	WB	94	36.0
Zamilpa-Mejía, 2003 57	1994-95	Mexico	Outpatient clinic	CS	Conv	Women in Mexico city	WB	448	18.1
Zamilpa-Mejía, 2003 57	1994-95	Mexico	Outpatient clinic	CS	Conv	Women in Cuernavaca city	WB	388	28.3
Intermediate-risk populations									
Benzaken, 2012 58	2009	Brazil	Community	CS	Conv	Individuals attending the leisure circuit	ELISA	585	62.1
Celentano, 2010 59	2001-01	Peru	Community	CS	Conv	Promiscuous women	ELISA	294	43.5
Celentano, 2010 59	2001-01	Peru	Community	CS	Conv	Promiscuous men	ELISA	2,645	24.4
Clark, 2009 60	2003-05	Peru	Community	CS	CRS	Women in slums	ELISA	320	40.6
Couture, 2008 ⁶¹	2006-07	Haiti	Community	CS	Conv	Clients of FSWs in Haiti	ELISA	351	22.0
Konda, 2005 35	2000-02	Peru	Community	CS	TLS	Men from a socially marginalized population	EIA	919	20.7
Konda, 2005 35	2000-02	Peru	Community	CS	TLS	Women from a socially marginalized population	EIA	108	42.6
Pinho, 2011 62	2003-05	Brazil	Community	CS	Conv	Brazilian truck drivers	ELISA	799	26.6
Sabidó, 2011 63	2008-09	Guatemala	Community	CS	Conv	Clients of FSWs	ELISA	351	3.4
Uribe-Salas, 1995 ⁶⁴	1993-93	Mexico	Community	CS	Conv	Men working in bars	WB	171	32.4
Villarroel-Torrico, 2018 ⁶⁵	2013-13	Bolivia	Prison	CS	Conv	>16 years old female prisoners	ELISA	219	62.6
High-risk populations									
Brito, 2015 66	2013	Dominican Republic	Community	CS	SS	MSM and transgender women	ELISA	100	38.0
Cárcamo, 2012 ¹⁸	2002-03	Peru	Community	CS	CRS	18-29 years old FSWs	ELISA	381	67.0
Castillo, 2015 ¹⁰	2009-11	Peru	Community	RCT	SS	Transgender men	ELISA	208	80.7
Castillo, 2015 ¹⁰	2009-11	Peru	Community	RCT	SS	25-35 years old MSM	ELISA	510	65.0
Clark, 2009 60	2003-05	Peru	Community	CS	CRS	Male sex workers	ELISA	2,424	13.0
Clark, 2009 60	2003-05	Peru	Community	CS	CRS	MSM	ELISA	541	69.0
Conde-Glez, 1999 ⁶⁷	1992-92	Mexico	Outpatient clinic	CS	Conv	FSWs in Mexico	WB	997	60.8
Creswell, 2010 ⁶⁸	2008	El Salvador	Community	CS	RDS	FSWs	ELISA	663	82.6
Da-Rosa santos, 1996 ²⁵	1994-94	Brazil	Community	CS	Conv	FSWs in Brazil	ELISA	20	75.0
Gotuzzo, 1994 69	1991-92	Peru	Outpatient clinic	CS	Conv	FSWs in Peru	WB	400	82.2
Hakre, 2013 70	2009-11	Panama	Community	CS	TLS	FSWs in Panama	ELISA	999	74.2
Hakre, 2014 71	2011-12	Panama	Community	CS	RDS	MSM in David city	ELISA	203	38.4
Hakre, 2014 71	2011-12	Panama	Community	CS	RDS	MSM in Panama city	ELISA	305	62.6
Hakre, 2014 71	2011-12	Panama	Community	CS	RDS	MSM in Colon	ELISA	91	72.9
Hernandez, 2011 ⁷²	2009-10	Nicaragua	Community	CS	RDS	MSM	ELISA	632	39.9
Konda, 2005 35	2000-02	Peru	Community	CS	TLS	MSM	EIA	167	72.5
Lama, 2006 ⁷³	2002-03	Peru	Community	CS	SS	MSM	ELISA	3,280	46.3

Lupi, 2011 ⁷	1996-97	Brazil	Community	Cohort	Conv	MSM	ELISA	170	39.4
Morales-Miranda, 2008 74	2006	Honduras	Community	CS	RDS	FSWs	ELISA	808	61.4
Nascimento, 2007 40	1995-03	Brazil	Outpatient clinic	CS	Conv	MSM	WB	29	45.0
Perez-Brumer 2013 75	2007-07	Peru	Outpatient clinic	CS	Conv	MSM in Lima	FLISA	560	55.4
Perla 2012 ⁷⁶	2002-03	Peru	Community	CS	SS	FSWs in Peru	FLISA	211	80.1
Rodrigues 2009 77	100/ 08	Brazil	Community	CS	Conv	MSM	ELISA	403	45.7
Sanahaz 1008^{-78}	1001.02	Diazii	Outpatiant alinia	CS CS	Conv	FSWa registered for routing exemination	WD	103	43.7
Sanchez, 1998	1991-92	Peru	Outpatient clinic	CS	Conv	FS ws registered for routine examination	WB	285	82.0
Sanchez, 1998	1991-92	Peru	Outpatient clinic	CS	Conv	FSWs not registered for routine examination	WB	116	82.8
Sanchez, 2007	2002-02	Peru	Community	CS	55	MSM	ELISA	1,328	51.0
Sanchez, 2009	1998-00	Peru	Outpatient clinic	Cohort	SS	MSM	WB	82	41.5
Shah, 2014 80	2008-08	El Salvador	Community	CS	RDS	MSM	ELISA	703	48.1
Shah, 2014 ⁸⁰	2008-08	El Salvador	Community	CS	RDS	FSWs	ELISA	768	82.3
Silva-Santisteban, 2012 ⁸¹	2009-09	Peru	Community	CS	RDS	Transgender women in Lima	ELISA	436	79.4
Soto, 2007 82	2001-02	El Salvador	Outpatient clinic	CS	MSCS	FSWs from El Salvador	ELISA	136	95.7
Soto, 2007 82	2001-02	El Salvador	Community	CS	TLS	MSM from El Salvador	ELISA	81	56.5
Soto, 2007 ⁸²	2001-02	Guatemala	Outpatient clinic	CS	MSCS	FSWs from Guatemala	ELISA	589	88.6
Soto, 2007 82	2001-02	Guatemala	Community	CS	TLS	MSM from Guatemala	ELISA	362	43.3
Soto, 2007 82	2001-02	Honduras	Outpatient clinic	CS	MSCS	FSWs from Honduras	ELISA	457	91.1
Soto, 2007 ⁸²	2001-02	Honduras	Community	CS	TIS	MSM from Honduras	FLISA	316	50.9
Soto, 2007 82	2001-02	Nicoroguo	Outpatiant alinia	CS	MSCS	ESWa from Niceregue	ELISA	553	82.1
Soto, 2007	2001-02	Nicaragua	Community	CS CS	TIS	MSM from Nicoroguo	ELISA	260	52.0
Solo, 2007 ⁸	2001-02	Nicaragua	Community	CS CS	ILS	FOW C D	ELISA	209	33.0
Soto, 2007 ⁶²	2001-02	Panama	Outpatient clinic	CS	MSCS	FSWs from Panama	ELISA	560	/3.0
Soto, 2007 ⁶²	2001-02	Panama	Community	CS	TLS	MSM from Panama	ELISA	515	44.3
Uribe-Salas, 1999 °	1992-93	Mexico	Community	CS	TLS	FSWs in Mexico city	WB	757	65.1
Uribe-Salas, 2003 84	1998-98	Mexico	Community	CS	Conv	FSWs in Mexico	WB	468	85.7
Zunt, 2006 85	-	Peru	Community	CS	SS	HTLV-II seronegative MSM	ELISA	2,621	44.9
Zunt, 2006 85	-	Peru	Community	CS	SS	HTLV-II seropositive MSM	ELISA	33	93.9
STI clinic attendees and sym	iptomatic popu	ilations							
Carvalho, 1999 ¹⁹	1993-97	Brazil	Outpatient clinic	CS	Conv	STI clinic attendees	WB	96	53.1
Martinez, 2005 ⁸⁶	2003-03	Chile	Outpatient clinic	CS	Conv	STI clinic attendees	ELISA	200	43.0
Nascimento, 2007 40	1995-03	Brazil	Outpatient clinic	CS	Conv	STI clinic attendees	WB	137	51.0
HIV positive populations an	d HIV sero-dis	cordant couple	s						
Batista, 2009 87	2002	Brazil	Community	Cohort	Conv	HIV positive patients	ELISA	145	61.4
Boulos 1992 ¹⁷	1986-88	Haiti	Community	CS	Conv	HIV positive pregnant Haitian women	ELISA	95	88.0
Da-Rosa Santos 1996 25	1994-94	Brazil	Community	CS	Conv	HIV positive patients	FLISA	85	73.0
Domercant 2017^{27}	2012 12	Haiti	Outpatient clinic	CS	Conv	HIV positive women	FLISA	144	71.5
Levett 2005 37	2012-12	Darbados	Outpatient elinie	CS CS	Conv	HIV positive adults	ELISA	120	71.5
Levell, 2005	2005 08	Barbados	Outpatient clinic	Cohort	Conv	Dragnant warman with UIV	ELISA	120	50.7
Nagainanta 2007 40	2003-08	Diazii	Outpatient clinic	Conon	Conv	Heghant wonien with HIV	ELISA	154	39.7
Nascimento, 2007 ⁴⁰	1995-03	Brazii	Outpatient clinic	CS CS	Conv	HIV patients with GUD	WB	30	87.0
Nascimento, 2007	1995-03	Brazii	Outpatient clinic	CS	Conv	HIV positive patients	WB	40	62.0
Paz-Bailey, 2012a ⁸⁹	2006-06	Honduras	Outpatient clinic	CS	Conv	HIV positive patients	ELISA	810	77.9
Paz-Bailey, 2012b ⁹⁰	2008-08	El Salvador	Outpatient clinic	CS	Conv	HIV positive patients	ELISA	760	84.5
Sanchez, 2009	1998-00	Peru	Outpatient clinic	Cohort	SS	MSM who seroconverted to HIV	WB	26	42.3
Santos, 2006 91	2001-02	Brazil	Outpatient clinic	CS	Conv	HIV positive patients	ELISA	150	52.0
Yanez Alvarez, 2011 ¹²	2003-05	Mexico	Outpatient clinic	Cohort	Conv	HIV positive patients	ELISA	301	48.5
Other populations ^b									
Almeida, 2017 ¹⁵	2011-14	Brazil	Outpatient clinic	CS	Conv	Patients with malignant nodules	ELISA	100	18.0
Bahena-Roman, 2020 92	2008-11	Mexico	Outpatient clinic	CS	Conv	Women with cervical related diseases	ELISA	644	25.0
Boulos, 1992 ¹⁷	1986-88	Haiti	Community	CS	Conv	HTLV-I seropositive pregnant Haitian women	ELISA	45	82.0
Calderon 2018 93	2014-15	Peru	Outpatient clinic	CS	Conv	Women with cancer	ELISA	44	36.4
Castle 2003 ⁹⁴	1993-97	Iamaica	Outpatient clinic	čč	Conv	Women with low grade cervical neoplasia	FLISA	201	60.9
Castle, 2003 94	1003_07	Iamaica	Outpatient clinic		Conv	Women with cervical neoplasia grade 2	FLISA	117	61.6
Castle 2003 94	1002 07	Jamaica	Outpatient elinie		Conv	Women with cervicel neoplasia grade 2	ELICA	02	72 5
Casue, 2003 Condo Conzel- $= 2002^{23}$	1775-77	Jamaica Mo	Community	CC CC	COIN	Women with convict neoplasta grade 5	UD	74	13.3
Conde-Gonzalez, 2003	2000-00	Mexico	Community		CRS	Women with cervical cancer	WB	408	40.8
Conde-Gonzalez, 2003	2000-00	wiex1co	Community	CS .	CK5	women with cancer	wв	128	22.0

De Sanjose, 1994 ²⁶	1985-88	Colombia	Outpatient clinic	CC	Conv	Women with CIN III	ELISA	243	60.8
DeBritton, 1993 95	1986-87	Panama	Hospital	CS	Conv	Women with cervical cancer	WB	189	57.0
Munoz, 1995 39	1985-88	Colombia	Outpatient clinic	CC	Conv	Women with invasive cancer	ELISA	121	75.2
Munoz, 1995 39	1985-88	Colombia	Outpatient clinic	CC	Conv	Husbands of women with invasive cancer	ELISA	52	59.6
Munoz, 1995 39	1985-88	Colombia	Outpatient clinic	CC	Conv	Husbands of women with CIN III	ELISA	120	60.8
Smith, 2002 53	-	Brazil	Outpatient clinic	CC	Conv	Brazilian women with squamous-cell carcinoma	WB	145	55.2
Smith, 2002 53	-	Brazil	Outpatient clinic	CC	Conv	Brazilian women with adeno- or adenosquamous carcinoma	WB	16	43.8
Smith, 2002 53	-	Colombia	Outpatient clinic	CC	Conv	Colombian women with squamous-cell carcinoma	WB	78	61.5
Smith, 2002 53	-	Peru	Outpatient clinic	CC	Conv	Peruvian women with squamous-cell carcinoma	WB	166	56.6
Smith, 2002 53	-	Peru	Outpatient clinic	CC	Conv	Peruvian women with adeno- or adenosquamous carcinoma	WB	24	66.7
Stone, 1995 96	1982-84	Costa Rica	Community	CC	Conv	Women with cervical carcinoma	WB	415	54.7
Stone, 1995 96	1982-84	Costa Rica	Community	CC	Conv	Women with invasive cervical cancer	WB	149	57.8

^a The reported study design is the original study design (case control, cross sectional, cohort, or randomized controlled trial). The included seroprevalence measures are those for the baseline measures at the beginning of the study. ^b Other populations include populations with an undetermined risk of acquiring HSV-2 infection such as patients with cervical cancer or their spouses.

Abbreviations: CC = Case control, Conv = Convenience, CIN = Cervical intraepithelial neoplasia, CRS = Cluster random sampling, CS = Cross sectional, EIA = Enzyme immunosorbent assay, ELISA = Enzyme-linked

Information of the convention, CH = Co

Figure S1. Forest plots presenting the outcomes of the pooled mean herpes simplex virus type 2 (HSV-2) seroprevalence among the different at risk populations in Latin America and the Caribbean.

A) General populations

Author, Year	HSV-2 positive	Sample size	Events per 100 observations	W(Random)	Prev(%)	95%CI	
Females			1				
Abraham, 2003	6	98		0.4%	6.1	[2.3: 12.9]	
Abraham, 2003	15	192	÷	0.4%	7.8	[4.4: 12.6]	
Ashlev-Morrow, 2004	42	94		0.4%	44.7	[34.4: 55.3]	
Ashley-Morrow, 2004	40	94	·	0.4%	42.6	[32.4: 53.2]	
Ashlev-Morrow, 2004	38	97		0.4%	39.2	[29.4: 49.6]	
Boulos, 1992	48	89		0.4%	53.9	[43.0: 64.6]	
Cárcamo, 2012	12	72		0.4%	16.7	[8.9: 27.3]	
Cárcamo, 2012	15	91		0.4%	16.5	[9.5: 25.7]	
Cárcamo, 2012	7	67		0.4%	10.4	[4.3; 20.3]	
Cárcamo, 2012	7	51		0.4%	13.7	[5.7: 26.3]	
Cárcamo, 2012	9	64		0.4%	14.1	[6.6; 25.0]	
Cárcamo, 2012	3	64		0.4%	4.7	[1.0; 13.1]	
Cárcamo, 2012	22	67		0.4%	32.8	[21.8; 45.4]	
Cárcamo, 2012	2	68		0.4%	2.9	[0.4; 10.2]	
Cárcamo, 2012	5	61		0.4%	8.2	[2.7; 18.1]	
Cárcamo, 2012	1	79	←	0.4%	1.3	[0.0; 6.9]	
Cárcamo, 2012	24	66		0.4%	36.4	[24.9; 49.1]	
Cárcamo, 2012	4	68		0.4%	5.9	[1.6; 14.4]	
Cárcamo, 2012	9	49		0.4%	18.4	[8.8; 32.0]	
Cárcamo, 2012	3	61		0.4%	4.9	[1.0; 13.7]	
Cárcamo, 2012	4	47		0.4%	8.5	[2.4; 20.4]	
Cárcamo, 2012	4	49		0.4%	8.2	[2.3; 19.6]	
Cárcamo, 2012	1	69	+	0.4%	1.4	[0.0; 7.8]	
Cárcamo, 2012	14	63		0.4%	22.2	[12.7; 34.5]	
Cárcamo, 2012	8	52		0.4%	15.4	[6.9; 28.1]	
Cárcamo, 2012	8	64		0.4%	12.5	[5.6; 23.2]	
Cárcamo, 2012	1	51		0.4%	2.0	[0.0; 10.4]	
Cárcamo, 2012	2	55	i	0.4%	3.6	[0.4; 12.5]	
Cárcamo, 2012	5	60		0.4%	8.3	[2.8; 18.4]	
Cárcamo, 2012	4	48		0.4%	8.3	[2.3; 20.0]	
Carvalho, 1999	9	19	ii	0.3%	47.4	[24.4; 71.1]	
Carvalho, 1999	5	21		0.3%	23.8	[8.2; 47.2]	
Carvalho, 1999	5	27		0.4%	18.5	[6.3; 38.1]	
Carvalho, 1999	4	35		0.4%	11.4	[3.2; 26.7]	
Clemens, 2010	5	55		0.4%	9.1	[3.0; 20.0]	
Clemens, 2010	5	47		0.4%	10.6	[3.5; 23.1]	
Clemens, 2010	11	52		0.4%	21.2	[11.1; 34.7]	
Clemens, 2010	8	31		0.4%	25.8	[11.9; 44.6]	
Clemens, 2010	6	33		0.4%	18.2	[7.0; 35.5]	
Clemens, 2010	11	51		0.4%	21.6	[11.3; 35.3]	
Clemens, 2010	17	51		0.4%	33.3	[20.8; 47.9]	
Clemens, 2010	9	42		0.4%	21.4	[10.3; 36.8]	
Conde-Glez, 2013	76	208		0.5%	36.5	[30.0; 43.5]	
Conde-Glez, 2013	43	208		0.5%	20.7	[15.4; 26.8]	
Conde-Glez, 2013	20	208	-	0.5%	9.6	[6.0; 14.5]	
Conde-Glez, 2013	11	208	+ 1	0.5%	5.3	[2.7; 9.3]	
Conde-Glez, 2013	76	208	· · ·	0.5%	36.5	[30.0; 43.5]	
Conde-Gonzalez, 2003	40	196	1	0.4%	20.4	[15.0; 26.7]	
Conde-Gonzalez, 2003	160	404		0.5%	39.6	[34.8; 44.6]	
Conde-Gonzalez, 2003	14	130	-	0.4%	10.8	[6.0; 17.4]	
Cowan, 2003	49	69		0.4%	71.0	[58.8; 81.3]	
Cowan, 2003	46	69	1	0.4%	66.7	[54.3; 77.6]	
Cowan, 2003	20	69		0.4%	29.0	[18.7; 41.2]	
Cowan, 2003	24	69		0.4%	34.0	[23.7; 47.2]	
Cowan, 2003	27	69		0.4%	39.1	[27.0; 51.0]	
Cowan, 2003	20	69		0.4%	29.0	[18.7; 41.2]	
Cowan, 2003	0	09		0.4%	11.0	[5.1, 21.0]	
De Sanjose, 1994	110	237	-	0.5%	49.0	[43.3, 50.3]	
Concolor 2006	239	764		0.5%	17.7	[27.3, 33.0]	
Guitarez, 2006	135	763	1	0.5%	10.0	[15.0, 20.0]	
Gutierrez, 2006	49	200		0.5%	19.0	[14.4, 24.5]	
Herrera-Ortiz 2013	166	1163	+	0.4%	4.1	[12 3: 16 4]	
Herrera-Ortiz 2013	100	200		0.5%	26.4	[12.3, 10.4]	
Herrera-Ortiz 2013	103	390		0.5%	20.4	[67.10.9]	
Konda 2005	04	267		0.5%	28.4	[0.7, 10.0]	
Konda, 2005	13	207		0.5%	20.4	[16 5: 27 6]	
Konda 2005	49	220		0.5%	13.9	[96.180]	
Konda 2005	32	232		0.5%	16.9	[12 4: 22 0]	
Lazcano-Ponce 2001	42	230	1	0.5%	10.0	[32 6: 40 2]	
Lazcano-Ponce 2001	59	210	L	0.4%	24 2	[18 6: 30 7]	
Lazcano-Ponce 2001	51	160		0.5%	45.0	[37 1: 53 1]	
Lazcano-Ponce 2001	12	215	U	0.4%	14 9	[10.4:20.4]	
Laroanon 0100, 2001	32	210		0.070	14.9	[.0.4, 20.4]	

Lovett 2005	40	100	····	0.4%	10 2 121 1: 10 11
Mercine 2018	45	122		0.4%	40.2 [31.4, 43.4]
	75	160		0.4%	46.9 [39.0, 54.9]
Moreira, 2018	9	32 -	· · · · · · · · · · · · · · · · · · ·	0.4%	28.1 [13.7; 46.7]
Munoz, 1995	95	141		0.4%	67.4 [59.0; 75.0]
Nascimento, 2008	69	141	· · · ·	0.4%	48.9 [40.4; 57.5]
Nascimento, 2008	42	95		0.4%	44.2 [34.0; 54.8]
Nascimento, 2008	36	65		0.4%	55.4 [42.5: 67.7]
Nascimento 2008	44	141	!i	0.4%	31 2 [23 7 39 5]
Nascimento 2008	32	95		0.4%	33 7 [24 3: 44 1]
Nascimento, 2008	36	65		0.4%	55 4 [42 5: 67 7]
Nascimento, 2008	20	141		0.4%	27.0 [10.9: 25.1]
Nascimento, 2008	30	141		0.4%	27.0 [19.8, 35.1]
Nascimento, 2008	19	95 —	1	0.4%	20.0 [12.5; 29.5]
Nascimento, 2008	23	65	i — • — •	0.4%	35.4 [23.9; 48.2]
Nascimento, 2008	11	141	1	0.4%	7.8 [4.0; 13.5]
Nascimento, 2008	19	95 —	12	0.4%	20.0 [12.5; 29.5]
Nascimento, 2008	19	64	k <u>i</u>	0.4%	29.7 [18.9: 42.4]
Oberle 1989	83	180		0.4%	46 1 [38 7 53 7]
Oberle 1989	86	19/	li	0.1%	14.3 [37.2:51.6]
Oberle, 1989	80	207		0.5%	29.6 [22.0: 45.6]
Oberle, 1969	40	207		0.070	30.0 [32.0, 43.0]
Oberie, 1989	40	122		0.4%	32.8 [24.6; 41.9]
Patnaik, 2007	50	136	·····	0.4%	36.8 [28.7; 45.5]
Patnaik, 2007	28	51		0.4%	54.9 [40.3; 68.9]
Patnaik, 2007	11	35	· · · · · · · · · · · · · · · · · · ·	0.4%	31.4 [16.9; 49.3]
Patnaik, 2007	9	14	·	0.3%	64.3 [35.1; 87.2]
Paz-Bailey 2009	249	391		0.5%	63 7 [58 7 68 5]
Rodriguez 2003	57	97	li	0.4%	58.8 [48.3: 68.7]
Rodriguez, 2000	107	10/		0.4%	55.2 [47.0; 62.2]
Rounguez, 2003	107	194		0.4%	50.2 [47.9, 02.3]
Rodriguez, 2003	104	193		0.4%	53.9 [46.6; 61.1]
Rodriguez, 2003	93	195	·····	0.4%	47.7 [40.5; 54.9]
Rodriguez, 2003	46	183	1	0.4%	25.1 [19.0; 32.1]
Rodriguez, 2003	25	141 —		0.4%	17.7 [11.8; 25.1]
Sanchez, 1996	43	201 -	1	0.4%	21.4 [15.9; 27.7]
Sanchez-Aleman, 2005	7	112	1	0.4%	6.2 [2.5: 12.5]
Sanchez-Aleman 2005	4	68	1	0.4%	59 [16:144]
Sanchez-Aleman 2005	3	20		0.3%	15.0 [3.2:37.9]
Sánchoz Alomán, 2009	16	225 +		0.5%	10.0 [0.2, 07.0]
Sanchez-Alemán, 2008	10	335 -	1	0.5%	4.0 [2.0, 7.0]
Sanchez-Aleman, 2008	0	10		0.3%	0.0 [0.0; 30.8]
Sánchez-Alemán, 2008	6	74 →		0.4%	8.1 [3.0; 16.8]
Sierra, 2011	18	82 –	<u> </u>	0.4%	22.0 [13.6; 32.5]
Sierra, 2011	33	129	<u> </u>	0.4%	25.6 [18.3; 34.0]
Sierra, 2011	40	193 -	<u> </u>	0.4%	20.7 [15.2; 27.1]
Sierra, 2011	38	197 -	1. 	0.4%	19.3 [14.0: 25.5]
Sierra 2011	18	74 -		0.4%	24.3 [15.1:35.7]
Sierra 2011	19	19/		0.4%	98 [60: 1/ 9]
Sierra 2011	1	57	1	0.4%	1 0 [0.0, 14.3]
		57		0.4%	1.0 [0.0, 9.4]
Smith, 2001	11	26		0.4%	42.3 [23.4; 63.1]
Smith, 2001	23	55	· · · · · · · · · · · · · · · · · · ·	0.4%	41.8 [28.7; 55.9]
Smith, 2001	15	46	1 1 • • • •	0.4%	32.6 [19.5; 48.0]
Smith, 2001	27	54		0.4%	50.0 [36.1; 63.9]
Smith, 2002	61	171		0.4%	35.7 [28.5; 43.3]
Smith, 2002	37	65		0.4%	56.9 [44.0: 69.2]
Uribe-Salas 2009	876	4233	+	0.5%	20.7 [19.5:21.9]
Vaccarella 2006	336	907	· ·	0.5%	37 0 [33 0: 40 3]
Weinharg 1002	000	507		0.070	46 7 [33.3, 40.3]
Weinberg, 1993	28	60	· · · · ·	0.4%	46.7 [33.7; 60.0]
Weinberg, 1993	34	94		0.4%	36.2 [26.5; 46.7]
Zamilpa-Mejía, 2003	27	153 —	(_	0.4%	17.6 [12.0; 24.6]
Zamilpa-Mejía, 2003	35	146	+++	0.4%	24.0 [17.3; 31.7]
Zamilpa-Mejía, 2003	66	160		0.4%	41.2 [33.5; 49.3]
Zamilpa-Mejía, 2003	45	146	¦i	0.4%	30.8 [23.5: 39.0]
Zamilpa-Meiía 2003	9	149 -		0.4%	6.0 [28.112]
Zamilna-Meija, 2003	9	82		0.4%	110 [51.100]
Cabatar 2010	5	02		0.470	11.0 [0.1, 19.0]
	28	237 +		0.5%	11.0 [0.0, 10.6]
Patzi-Churqui, 2020	36	98	· · · · · · · · · · · · · · · · · · ·	0.4%	36.7 [27.2; 47.1]
Patzi-Churqui, 2020	57	104	· · · ·	0.4%	54.8 [44.7; 64.6]
Patzi-Churqui, 2020	64	98	li →	0.4%	65.3 [55.0; 74.6]
Patzi-Churqui, 2020	48	86		0.4%	55.8 [44.7; 66.5]
Fixed effect model	6184	23959	•		24.2 [23.7; 24.8]
Random effects model			\$	58.8%	25.2 [22.6: 28.0]
Heterogeneity: $I^2 = 95\%$, γ_{12}^2	₁₈ = 2940.59 (p = 0)				. ,

			,		
Males					
Abraham, 2003	4	107 -	2 2 2 2	0.4%	3.7 [1.0: 9.3]
Abraham, 2003	11	297 +		0.5%	3.7 [1.9: 6.5]
Alberts 2013	115	1312 ≖		0.5%	8.8 [7.3:10.4]
Alberts 2013	533	1388	+	0.5%	38 4 [35 8: 41 0]
Cárcamo 2012	10	45 —		0.4%	22 2 [11 2: 37 1]
Cárcamo 2012	12	50 -		0.4%	24.0 [13.1:38.2]
Cárcamo 2012	8	45 -		0.4%	17.8 [8.0: 32.1]
Cárcamo 2012	2	36		0.4%	56 [07:187]
Cárcamo 2012	5	51		0.4%	0.8 [33:21.4]
Cárcamo 2012	1	60 ±		0.4%	17 [0.0, 21.4]
Cárcamo, 2012	10	55	<u> </u>	0.4%	24.5 [22.2:49.6]
	19	55		0.4%	34.5 [22.2, 40.0]
	1	51	2 2 2 2	0.4%	2.0 [0.0, 10.4]
	4	52		0.4%	0.0 [0.0: 7.1]
	10	50 -		0.4%	0.0 [0.0, 7.1]
	19	51		0.4%	37.3 [24.1, 51.9]
	1	62 -		0.4%	1.6 [0.0; 8.7]
Carcamo, 2012	2	48		0.4%	4.2 [0.5; 14.3]
Carcamo, 2012	3	42		0.4%	7.1 [1.5; 19.5]
Carcamo, 2012	5	59		0.4%	8.5 [2.8; 18.7]
Cárcamo, 2012	2	40 →		0.4%	5.0 [0.6; 16.9]
Cárcamo, 2012	11	60 —		0.4%	18.3 [9.5; 30.4]
Cárcamo, 2012	8	30 —		0.4%	26.7 [12.3; 45.9]
Cárcamo, 2012	4	47 →	- 	0.4%	8.5 [2.4; 20.4]
Cárcamo, 2012	1	45 +		0.4%	2.2 [0.1; 11.8]
Cárcamo, 2012	3	61		0.4%	4.9 [1.0; 13.7]
Cárcamo, 2012	5	59	- - -	0.4%	8.5 [2.8; 18.7]
Cárcamo, 2012	4	51		0.4%	7.8 [2.2; 18.9]
Cárcamo, 2012	2	26		0.4%	7.7 [0.9; 25.1]
Clark, 2008	85	467 -	-	0.5%	18.2 [14.8; 22.0]
Clark, 2008	51	462 +		0.5%	11.0 [8.3; 14.3]
Clark, 2008	37	383 +		0.5%	9.7 [6.9; 13.1]
Clark, 2008	114	463		0.5%	24.6 [20.8; 28.8]
Clemens, 2010	2	53	- - -	0.4%	3.8 [0.5; 13.0]
Clemens, 2010	2	43		0.4%	4.7 [0.6: 15.8]
Clemens, 2010	5	47	-	0.4%	10.6 [3.5:23.1]
Clemens 2010	6	22 -		0.3%	27.3 [10.7:50.2]
Clemens 2010	9	29 -		0.4%	31.0 [15.3: 50.8]
Clemens 2010	12	45 -		0.4%	26.7 [14.6: 41.9]
Clemens 2010	13	43		0.4%	30 2 [17 2: 46 1]
Clemens 2010	8	46 -		0.4%	174 [78:314]
Conde-Glez 2013	29	264 +		0.5%	11.4 [7.6, 01.4]
Conde-Glez 2013	29	264 +		0.5%	11.0 [7.5, 15.4]
Conde-Glez, 2013	25	264 +		0.5%	98 [65:1/1]
Conde-Glez, 2013	20	264 +		0.5%	0.0 [0.0, 14.1]
Conde-Glez, 2013	20	264		0.5%	11.0 [7.5: 15.4]
Collde-Glez, 2013	29	57	· · · · · · · · · · · · · · · · · · ·	0.3%	11.0 [7.5, 15.4]
Cowan, 2003	23	57		0.4%	40.4 [27.0, 34.2]
Cowan, 2003	17	50	3	0.4%	30.4 [10.0, 44.1]
Cowan, 2003	14	50 -		0.4%	25.0 [14.4, 36.4]
Cowan, 2003	13	56 -		0.4%	23.2 [13.0; 36.4]
Cowan, 2003	10	56 -		0.4%	17.9 [8.9; 30.4]
Cowan, 2003	3	56		0.4%	5.4 [1.1; 14.9]
Cowan, 2003	0	56 ⊷		0.4%	0.0 [0.0; 6.4]
Goncalez, 2006	115	837 +		0.5%	13.7 [11.5; 16.3]
Gutierrez, 2006	17	183 -		0.4%	9.3 [5.5; 14.5]
Gutierrez, 2006	15	164		0.4%	9.1 [5.2; 14.6]
Juarez-Figueroa, 1997	155	538	*	0.5%	28.8 [25.0; 32.8]
Konda, 2005	4	104 +		0.4%	3.8 [1.1; 9.6]
Konda, 2005	10	130		0.4%	7.7 [3.8; 13.7]
Konda, 2005	21	183		0.4%	11.5 [7.2; 17.0]
Konda, 2005	12	253 +		0.5%	4.7 [2.5; 8.1]
Lupi, 2011	45	155		0.4%	29.0 [22.0; 36.9]
Munoz, 1995	81	126	· · · · ·	0.4%	64.3 [55.3; 72.6]
Munoz, 1995	41	73		0.4%	56.2 [44.1; 67.8]
Nascimento, 2008	44	158		0.4%	27.8 [21.0; 35.5]
Nascimento, 2008	70	195		0.4%	35.9 [29.2; 43.1]
Nascimento, 2008	87	218		0.5%	39.9 [33.4; 46.7]
Nascimento, 2008	36	158		0.4%	22.8 [16.5; 30.1]
Nascimento, 2008	55	195	 	0.4%	28.2 [22.0; 35.1]
Nascimento, 2008	85	218		0.5%	39.0 [32.5: 45.8]
Nascimento, 2008	30	158 —	-	0.4%	19.0 [13.2: 26.0]
Nascimento, 2008	27	195 -		0.4%	13.8 [9.3: 19.5]
Nascimento, 2008	63	218		0.5%	28.9 [23 0: 35 4]
Nascimento, 2008	9	157 -		0 4%	5.7 [27.10.6]
Nascimento 2008	18	195 -		0.4%	92 [56:14:2]
Nascimento 2008	63	218		0.5%	28.9 [23.0: 35.4]
Paz-Bailey 2009	200	400		0.5%	50.0 [45.0: 55.0]
Sanchez 1996	200	281 +		0.5%	78 [50.116]
Sanchez, 1990	5	70		0.070	63 [21.1/0]
Sanchez-Aleman, 2005	5	10		0.4%	
Sanchez-Aleman, 2005	0	40		0.4%	5.0 [0.0; 0.8]
Sanchez-Alemán, 2005	1	160 -		0.3%	24 [0.1, 24.9]
Sánchez Alemán 2008	4	10 -		0.470	2.4 [0.0, 3.9]
Sanchez-Alemán, 2008	4	104		0.3%	21.1 [0.1,43.6]
Janchez-Aleman, 2008	4	1022 -	1	0.4%	3.0 [1.1; 9.6]
Cobstar 2010	260	1923		0.5%	13.5 [12.0; 15.1]
Gauster, 2019	45	200 +		0.5%	15.7 [11.7; 20.5]
Fixed effect model	2980	10446		25 00/	10.0 [15.5; 16.6]
Random effects model	= 1014.00 (= = 0)	\$		35.8%	14.2 [11.6; 17.0]
THE PROPERTY I SHOW Y	- 1214 02 01 = 01				

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2.

B) Intermediate-risk populations

			Events per 100			
Author, Year	HSV-2 positive Sam	ole size	observations W	(Random)	Prev(%)	95%CI
Females						
Benzaken, 2012	220	313		4.4%	70.3	[64.9; 75.3]
Celentano, 2010	128	294		4.4%	43.5	[37.8; 49.4]
Clark, 2009	130	320		4.4%	40.6	[35.2; 46.2]
Konda, 2005	6	27		3.6%	22.2	[8.6; 42.3]
Konda, 2005	8	23		3.5%	34.8	[16.4; 57.3]
Konda, 2005	8	16		3.2%	50.0	[24.7; 75.3]
Konda, 2005	6	19		3.3%	31.6	[12.6; 56.6]
Konda, 2005	19	24	· · · · · · · · · · · · · · · · · · ·	3.5%	79.2	[57.8; 92.9]
Villarroel-Torrico, 2018	137	219		4.4%	62.6	[55.8; 69.0]
Fixed effect model	662	1255	\$		53.0	[50.1; 55.8]
Random effects model			\diamond	34.8%	49.3	[37.9; 60.8]
Heterogeneity: $I^2 = 92\%$, γ	ζ ₈ ² = 102.46 (<i>p</i> < 0.01)					
Males						
Benzaken, 2012	143	285		4.4%	50.2	[44.2; 56.1]
Celentano, 2010	645	2645	-	4.5%	24.4	[22.8; 26.1]
Couture, 2008	26	178		4.4%	14.6	[9.8; 20.7]
Couture, 2008	57	173		4.3%	32.9	[26.0; 40.5]
Konda, 2005	59	367	-	4.4%	16.1	[12.5; 20.2]
Konda, 2005	38	263		4.4%	14.4	[10.4; 19.3]
Konda, 2005	37	138		4.3%	26.8	[19.6; 35.0]
Konda, 2005	30	96		4.2%	31.2	[22.2; 41.5]
Konda, 2005	26	55		4.0%	47.3	[33.7; 61.2]
Pinho, 2011	24	147		4.3%	16.3	[10.7; 23.3]
Pinho, 2011	60	256		4.4%	23.4	[18.4; 29.1]
Pinho, 2011	85	265		4.4%	32.1	[26.5; 38.1]
Pinho, 2011	52	130		4.3%	40.0	[31.5; 49.0]
Sabidó, 2011	12	351	*	4.4%	3.4	[1.8; 5.9]
Uribe-Salas, 1995	55	171		4.3%	32.2	[25.2; 39.7]
Fixed effect model	1349	5520	•		23.5	[22.4; 24.7]
Random effects model	2		\diamond	65.2%	25.6	[19.5; 32.2]
Heterogeneity: $I^2 = 96\%$, γ	$\chi^2_{14} = 331.01 \ (p < 0.01)$					
Fixed effect model	2011	6775	0		28.4	[27.3; 29.5]
Random effects model			\diamond	100.0%	33.3	[26.0; 41.0]
Prediction interval	2	_				[4.1; 72.6]
Heterogeneity: $I^2 = 97\%$, γ	$l_{23}^2 = 817.42 \ (p < 0.01)$	1				
Residual heterogeneity: I ²	= 95%, χ^2_{22} = 433.47 (p <	< 0.01) 0	20 40 60 80 100			
			HSV-2 prevalence (95% CI)			

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2.

C) High-risk populations

Author, Year	HSV-2 positive	Sample size	observations	W(Random)	Prev(%)	95%CI
Females						
Cárcamo, 2012	14	18	+	1.0%	77.8	[52.4; 93.6]
Cárcamo, 2012	32	36		1.0%	88.9	[73.9; 96.9]
Carcamo, 2012	11	15		0.9%	13.3	[44.9; 92.2]
Cárcamo, 2012	8	11		0.9%	72.7	[39.0: 94.0]
Cárcamo, 2012	14	27		1.0%	51.9	[31.9; 71.3]
Cárcamo, 2012	6	10		0.8%	60.0	[26.2; 87.8]
Cárcamo, 2012	5	12		0.9%	41.7	[15.2; 72.3]
Cárcamo, 2012	10	12		0.9%	40.0	[51.6; 97.9]
Cárcamo, 2012	9	15		0.9%	60.0	[32.3; 83.7]
Cárcamo, 2012	9	12		0.9%	75.0	[42.8; 94.5]
Cárcamo, 2012	3	17		0.9%	17.6	[3.8; 43.4]
Cárcamo, 2012	10	10		0.9%	50.0	[32.9; 81.6]
Cárcamo, 2012	8	11		0.9%	72.7	[39.0: 94.0]
Cárcamo, 2012	1	11 -	·	0.9%	9.1	[0.2; 41.3]
Cárcamo, 2012	4	14		0.9%	28.6	[8.4; 58.1]
Cárcamo, 2012	16	21		1.0%	76.2	[52.8; 91.8]
Cárcamo 2012	20	32		1.0%	96.9	[83.8: 99.9]
Cárcamo, 2012	23	26	· · · · ·	1.0%	88.5	[69.8; 97.6]
Conde-Glez, 1999	137	302		1.1%	45.4	[39.7; 51.2]
Conde-Glez, 1999	211	330		1.1%	63.9	[58.5; 69.1]
Conde-Glez, 1999	124	187		1.1%	66.3	[59.1; 73.0]
Conde-Glez, 1999	63	77		1.1%	81.8	[59.3, 78.1]
Da-Rosa santos, 1996	15	20		1.0%	75.0	[50.9; 91.3]
Gotuzzo, 1994	328	400	-	1.1%	82.0	[77.9; 85.6]
Hakre, 2013	234	455		1.2%	51.4	[46.7; 56.1]
Hakre, 2013	54	64		1.1%	84.4	[73.1; 92.2]
Hakre 2013	115	150		1.1%	72.3	[64.5: 79.1]
Hakre, 2013	39	52		1.1%	75.0	[61.1: 86.0]
Hakre, 2013	74	95	· · · ·	1.1%	77.9	[68.2; 85.8]
Hakre, 2013	23	28	1	1.0%	82.1	[63.1; 93.9]
Perla, 2012	169	211	-	1.1%	80.1	[74.1; 85.3]
Sanchez, 1998	232	283		1.1%	82.0	[77.0; 86.3]
Sanchez, 1998 Shah, 2014	90	116	-	1.1%	82.8	[74.6; 89.1]
Soto 2007	124	130	-	1.1%	95.4	[90.2: 98.3]
Soto, 2007	462	522	+	1.2%	88.5	[85.5; 91.1]
Soto, 2007	416	457	-	1.2%	91.0	[88.0; 93.5]
Soto, 2007	447	545	*	1.2%	82.0	[78.5; 85.2]
Soto, 2007	371	509	-	1.2%	72.9	[68.8; 76.7]
Uribe-Salas, 1999	107	214		1.1%	50.0	[43.1; 56.9]
Uribe-Salas, 1999	124	169		1.1%	73.4	[66.0: 79.9]
Uribe-Salas, 1999	70	80		1.1%	87.5	[78.2; 93.8]
Uribe-Salas, 2003	62	90		1.1%	68.9	[58.3; 78.2]
Uribe-Salas, 2003	140	164		1.1%	85.4	[79.0; 90.4]
Uribe-Salas, 2003	90	98		1.1%	91.8	[84.5; 96.4]
Uribe-Salas, 2003	50	50	· · · · ·	1.1%	09.3	[78.1; 96.0]
Morales-Miranda, 2008	496	808	-	1.2%	61.4	[57.9: 64.8]
Creswell, 2010	548	663	+	1.2%	82.7	[79.6; 85.5]
Fixed effect model	6732	9023	•	-	76.4	[75.5; 77.3]
Random effects model	2		\$	58.5%	74.8	[70.6; 78.8]
Heterogeneity: /~ = 94%,)	$C_{55} = 901.58 (p < 0.5)$	01)				
Males						
Brito, 2015	38	100		1.1%	38.0	[28.5; 48.3]
Castillo, 2015	168	208		1.1%	80.8	[74.7; 85.9]
Castillo, 2015	331	510		1.2%	64.9	[60.6; 69.0]
Clark 2009	373	541		1.2%	68.9	[64.9: 72.8]
Hakre, 2014	74	203		1.1%	36.5	[29.8; 43.5]
Hakre, 2014	182	305	+	1.1%	59.7	[53.9; 65.2]
Hakre, 2014	63	91		1.1%	69.2	[58.7; 78.5]
Hernandez, 2011 Konda, 2005	293	632	+	1.2%	46.4	[42.4; 50.3]
Konda 2005	8	17		0.9%	47.1	[23.0: 72.2]
Konda, 2005	31	41		1.1%	75.6	[59.7; 87.6]
Konda, 2005	34	45		1.1%	75.6	[60.5; 87.1]
Konda, 2005	34	37		1.0%	91.9	[78.1; 98.3]
Lama, 2006	166	802		1.2%	20.7	[17.9; 23.7]
Lama 2006	416	584		1.2%	71.2	[43.0, 40.0]
Lama, 2006	156	208		1.1%	75.0	[68.5; 80.7]
Lupi, 2011	67	170		1.1%	39.4	[32.0; 47.2]
Nascimento, 2007	13	29		1.0%	44.8	[26.4; 64.3]
Perez-Brumer, 2013 Boroz Brumer, 2013	248	438		1.2%	50.0	[51.8; 61.3]
Rodrigues, 2009	184	403		1.1%	45.7	[40.7; 50.7]
Sanchez, 2007	33	149		1.1%	22.1	[15.8; 29.7]
Sanchez, 2007	322	562	+	1.2%	57.3	[53.1; 61.4]
Sanchez, 2007	94	362	+	1.1%	26.0	[21.5; 30.8]
Sanchez, 2007	203	255	+	1.1%	79.6	[14.1; 84.4]
Shah, 2014	338	703	+	1.2%	48.1	[44.3; 51.8]
Silva-Santisteban, 2012	354	436	+	1.2%	81.2	[77.2; 84.8]
Soto, 2007	46	81		1.1%	56.8	[45.3; 67.8]
Soto, 2007	157	362	+	1.1%	43.4	[38.2; 48.7]
Soto, 2007	161	316		1.1%	50.9	[45.3; 56.6]
Soto, 2007	145	269	+	1.1%	53.9	[47.7; 60.0]
Zunt 2006	228	2621		1.2%	44.3	[43.0: 46.8]
Zunt, 2006	31	33		1.0%	93.9	[79.8; 99.3]
Fixed effect model	7349	16321	0		44.4	[43.6; 45.2]
Random effects model	2 - 0054 - 01		\$	41.5%	54.6	[47.4; 61.7]
Heterogeneity: /* = 99%,)	$C_{36} = 2851.36 \ (p = 0)$	9				
Fixed effect model	14081	25344			56.1	[55.5; 56.7]
Random effects model			\$	100.0%	66.2	[61.0; 71.2]
Prediction interval	2 = epoe 70 /-	. г				[18.0; 99.4]
Residual heterogeneity: / = 99%,)	$= 98\%, \gamma^2 = 3752$	94 (p = 0) 0	20 40 60 80 10	0		
	1 J 10, A91 - 57 52		HSV-2 prevalence (95% CI)			

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2.

D) STI clinic attendees and symptomatic populations (mixed women and men)

Author, Year	HSV-2 positive	Sample size	E	vents p observa	per 100 ations)	W(Random)	Prev(%)	95%CI
Carvalho, 1999	7	17	12	. :				7.6%	41.2	[18.4; 67.1]
Carvalho, 1999	11	26	_	-	-			10.7%	42.3	[23.4; 63.1]
Carvalho, 1999	7	12				-		5.7%	58.3	[27.7; 84.8]
Carvalho, 1999	26	40		-	- 10	_		14.6%	65.0	[48.3; 79.4]
Martinez, 2005	86	200		- + 1				32.7%	43.0	[36.0; 50.2]
Nascimento, 2007	70	137			-			28.6%	51.1	[42.4; 59.7]
Fixed effect model	207	432							47.9	[43.0; 52.7]
Random effects model				\langle	>			100.0%	49.2	[41.9; 56.5]
Prediction interval	-			-	_					[31.3; 67.1]
Heterogeneity: $I^2 = 39\%$, χ	$p_{5}^{2} = 8.20 \ (p = 0.15)$)				1	1			
		C	20	40	60	80	100			
			HSV-2	prevale	nce (9	5% C	1)			

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2, STI = Sexually transmitted infection.

F) HIV positive individuals and individuals in HIV discordant couples

Author, Year	HSV-2 positive	Sample size	Events per 100 observations	W(Random)	Prev(%)	95%CI
Females						
Boulos, 1992	84	95		5.4%	88.4	[80.2; 94.1]
Domercant, 2017	103	144	<u> </u>	5.6%	71.5	[63.4; 78.7]
Lima, 2018	3	15		3.6%	20.0	[4.3; 48.1]
Lima, 2018	56	87		5.4%	64.4	[53.4; 74.4]
Lima, 2018	21	32		4.6%	65.6	[46.8; 81.4]
Paz-Bailey, 2012a	367	443	-	5.9%	82.8	[79.0; 86.2]
Paz-Bailey, 2012b	333	379		5.9%	87.9	[84.1; 91.0]
Santos, 2006	34	67		5.2%	50.7	[38.2; 63.2]
Yanez Alvarez, 2011	45	92		5.4%	48.9	[38.3; 59.6]
Fixed effect model	1046	1354	\diamond		78.7	[76.4; 80.9]
Random effects model				47.0%	67.9	[56.2; 78.6]
Heterogeneity: $I^2 = 94\%$, γ	$\chi_8^2 = 133.43 \ (p < 0.0)$	01)				
Males						
Paz-Bailey, 2012a	256	367		5.9%	69.8	[64.8; 74.4]
Paz-Bailey, 2012b	309	381		5.9%	81.1	[76.8; 84.9]
Sanchez, 2009	11	26		4.3%	42.3	[23.4; 63.1]
Santos, 2006	44	83		5.4%	53.0	[41.7; 64.1]
Yanez Alvarez, 2011	101	209		5.7%	48.3	[41.4; 55.3]
Fixed effect model	721	1066	\$		68.4	[65.6; 71.2]
Random effects model				27.2%	60.6	[45.6; 74.7]
Heterogeneity: $I^2 = 95\%$, γ	$\chi_4^2 = 83.87 \ (p < 0.01)$	1)				
Mixed sexes						
Batista, 2009	89	145		5.6%	61.4	[52.9; 69.3]
Da-Rosa santos, 1996	62	85		5.4%	72.9	[62.2; 82.0]
Levett, 2005	93	120		5.5%	77.5	[69.0; 84.6]
Nascimento, 2007	26	30		4.5%	86.7	[69.3; 96.2]
Nascimento, 2007	25	40		4.8%	62.5	[45.8; 77.3]
Fixed effect model	295	420	\diamond		70.7	[66.2; 75.0]
Random effects model	l,			25.8%	71.9	[62.9; 80.2]
Heterogeneity: $I^2 = 71\%$, γ	χ ₄ ² = 13.95 (<i>p</i> < 0.01	1)				
Fixed effect model	2062	2840	\$		73.8	[72.1; 75.4]
Random effects model	l.		· •	100.0%	67.3	[60.0; 74.2]
Prediction interval				_		[33.8; 93.2]
Heterogeneity: $I^2 = 93\%$, γ	$\chi^2_{18} = 264.08 \ (p < 0.00)$.01)		I		
Residual heterogeneity: I ²	$x = 93\%, \chi^2_{16} = 231.2$	25 (p < 0.01) (0 20 40 60 80 1	00		
			HSV-2 prevalence (95% CI)			

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2, HIV = Human immunodefficency virus.

G) Other populations

			Even	ts per 100			
Author, Year	HSV-2 positive S	Sample size	obs	ervations	W(Random)	Prev(%)	95%CI
Females				1			
Boulos, 1992	36	45		· · · · ·	3.9%	80.0	[65.4; 90.4]
Calderon, 2018	16	44			3.9%	36.4	[22.4; 52.2]
Castle, 2003	122	201		- <u></u>	4.4%	60.7	[53.6; 67.5]
Castle, 2003	72	117			4.3%	61.5	[52.1; 70.4]
Castle, 2003	67	92			4.2%	72.8	[62.6; 81.6]
Conde-Gonzalez, 2003	18	71		H	4.1%	25.4	[15.8; 37.1]
Conde-Gonzalez, 2003	44	104		• <u> </u>	4.3%	42.3	[32.7; 52.4]
Conde-Gonzalez, 2003	129	233		<u>-</u>	4.4%	55.4	[48.7; 61.9]
Conde-Gonzalez, 2003	8	53			4.0%	15.1	[6.7; 27.6]
Conde-Gonzalez, 2003	21	75		1	4.1%	28.0	[18.2; 39.6]
De Sanjose, 1994	148	243			4.4%	60.9	[54.5; 67.1]
DeBritton, 1993	107	189		<u></u>	4.4%	56.6	[49.2; 63.8]
Munoz, 1995	91	121			4.3%	75.2	[66.5; 82.6]
Smith, 2002	80	145			4.3%	55.2	[46.7; 63.4]
Smith, 2002	7	16		•	3.1%	43.8	[19.8; 70.1]
Smith, 2002	48	78		<u> </u>	4.2%	61.5	[49.8; 72.3]
Smith, 2002	94	166		<u> </u>	4.4%	56.6	[48.7; 64.3]
Smith, 2002	16	24			3.4%	66.7	[44.7; 84.4]
Stone, 1995	227	415			4.5%	54.7	[49.8; 59.6]
Stone, 1995	86	149			4.3%	57.7	[49.4; 65.8]
Bahena-Roman, 2020	161	644			4.5%	25.0	[21.7; 28.5]
Fixed effect model	1598	3225		\$		49.3	[47.6; 51.1]
Random effects model					87.5%	52.0	[44.2; 59.8]
Heterogeneity: $I^2 = 95\%$, χ	$\chi^2_{20} = 368.74 \ (p < 0.0)$	1)					-
Males							
Munoz, 1995	31	52		- <u> </u>	4.0%	59.6	[45.1: 73.0]
Munoz, 1995	73	120			4.3%	60.8	[51.5; 69.6]
Fixed effect model	104	172		\diamond		60.5	[53.0; 67.7]
Random effects model				\diamond	8.3%	60.5	[53.0; 67.7]
Heterogeneity: $I^2 = 0\%$, χ_1^2	= 0.03 (p = 0.87)						• • •
Mixed sexes							
Almeida, 2017	18	100			4.2%	18.0	[11.0: 26.9]
Fixed effect model	18	100	\diamond			18.0	[11.0: 26.2]
Random effects model			\diamond		4.2%	18.0	[11.0: 26.2]
Heterogeneity: not applica	ble						
Final offect we del	4700	0.407				40.0	147 0. 50 03
Fixed effect model	1720	3497			100 00/	48.9	[47.2; 50.6]
Random enects model				\checkmark	100.0%	51.1	[43.7; 30.5]
Hotorogonoity: $l^2 = 0.50$	$r^{2} = 400 EE / n = 0.0$	и л) Г					[10.5; 85.2]
Posidual betarageneity: $I = 95\%$, χ	$-9404 m^2 - 360 77$	7(p < 0.01) = 0	20 4	0 60 80	100		
Residual neterogenetty. /	$= 34\%, \chi_{21} = 300.77$	(p < 0.01) 0	HSV/ 2 prov		100		
			10V-2 pier	alei (50 /0 (1)			

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2.

Table S5. Univariable and multivariable meta-regression analyses for HSV-2 seroprevalence among the different at risk populations in Latin America and the Caribbean using each of country's income and country instead of subregion in the multivariable meta-regression.

			Outcome measures	Sample size	- T	J nivariable a	malysis		Multivariable analysis					
							LR test	Adjusted	Model 1	8	Model 2	b	Model 3	c
			Total n	Total N	<i>RR</i> (95%CI)	p-value	p-value	$R^{2}(\%)$	ARR (95% CI)	p-value	ARR (95% CI)	p-value	ARR (95% CI)	p-value
		General populations	236	56,457	1.00	-	< 0.001	45.98	1.00	-	1.00	-	1.00	-
		Intermediate-risk populations	24	6,775	1.52 (1.16-2.00)	0.002			1.55 (1.22-1.96)	< 0.001	1.49 (1.18-1.87)	0.001	1.58 (1.26-1.97)	< 0.001
		High-risk populations	93	25,344	3.09 (2.64-3.61)	< 0.001			3.09 (2.67-3.57)	< 0.001	2.81 (2.44-3.23)	< 0.001	3.08 (2.66-3.55)	< 0.001
	Population type	STI clinic attendees and symptomatic populations	6	432	2.49 (1.47-4.22)	0.001			2.40 (1.48-3.90)	<0.001	2.15 (1.34-3.45)	0.002	2.18 (1.38-3.42)	0.001
		HIV positive individuals and individuals in HIV discordant couples	19	2,840	3.21 (2.38-4.32)	<0.001			3.06 (2.37-3.95)	<0.001	2.59 (2.02-3.33)	<0.001	2.77 (2.18-3.51)	<0.001
		Other populations ^d	24	3,497	2.42 (1.85-3.16)	< 0.001			1.56 (1.24-1.97)	< 0.001	1.55 (1.24-1.94)	< 0.001	1.51 (1.22-1.88)	< 0.001
		<20 years	35	6,538	1.00	-	< 0.001	10.26	1.00	-	1.00	-	1.00	-
		20-30 years	47	7,751	2.05 (1.40-3.00)	< 0.001			1.63 (1.27-2.09)	< 0.001	1.70 (1.34-2.17)	< 0.001	1.63 (1.29-2.05)	< 0.001
S	Age group	30-40 years	22	2,933	2.58 (1.64-4.04)	< 0.001			2.24 (1.68-2.99)	< 0.001	2.29 (1.72-3.03)	< 0.001	2.11 (1.61-2.77)	< 0.001
isti		>40 years	39	5,940	2.84 (1.92-4.18)	< 0.001			3.22 (2.50-4.14)	< 0.001	3.20 (2.50-4.09)	< 0.001	2.92 (2.30-3.71)	< 0.001
cter		Mixed ages	259	72,183	2.49 (1.82-3.41)	< 0.001			1.79 (1.44-2.21)	< 0.001	1.72 (1.40-2.12)	< 0.001	1.68 (1.37-2.07)	< 0.001
ara		Women	234	38,816	1.00	-	0.001	4.82	1.00	-	1.00	-	1.00	-
ch	Sex	Men	144	39,525	0.67 (0.56-0.80)	< 0.001			0.68 (0.60-0.76)	< 0.001	0.70 (0.62-0.78)	< 0.001	0.68 (0.61-0.76)	< 0.001
ion		Mixed sexes	24	17,004	0.81 (0.57-1.16)	0.267			0.59 (0.46-0.77)	< 0.001	0.65 (0.50-0.83)	0.001	0.62 (0.48-0.80)	< 0.001
ulat		Brazil	106	25,766	1.00	-	< 0.001	12.58	-	-	-	-	1.00	-
Pop		Colombia	19	2,247	1.36 (0.91-2.01)	0.125			-	-	-	-	1.20 (0.93-1.55)	0.156
		Costa Rica	13	2,364	1.46 (0.92-2.30)	0.102			-	-	-	-	1.23 (0.92-1.64)	0.157
	Countries	Mexico	76	23,437	0.71 (0.56-0.91)	0.008			-	-	-	-	0.66 (0.56-0.78)	< 0.001
		Panama	15	3,334	1.81 (1.18-2.78)	0.006			-	-	-	-	1.10 (0.82-1.47)	0.506
		Peru	131	24,976	0.92 (0.74-1.14)	0.476			-	-	-	-	0.87 (0.73-1.02)	0.096
		Other ^e	42	13,221	1.84 (1.39-2.45)	< 0.001			-	-	-	-	1.20 (0.99-1.46)	0.050
		Central America	124	38,103	1.00	-	0.065	0.82	1.00	-	-	-	-	-
	Subregions	South America	264	54,798	0.95 (0.79-1.14)	0.606			1.13 (1.00-1.27)	0.047	-	-	-	-
		Caribbean	14	2,444	1.62 (1.02-2.58)	0.040			1.17 (0.87-1.57)	0.281	-	-	-	-
	Country's	LIC and LMIC	29	9,846	1.00	-	< 0.001	9.07	-	-	1.00	-	-	-
	income	UMIC	354	81,539	0.45 (0.33-0.62)	< 0.001			-	-	0.65 (0.54-0.78)	<0.001	-	-
		HIC	19	3,960	0.80 (0.34-1.30)	0.528	0.422	0.00	-	-	0.83 (0.03-1.11)	0.220	-	-
	A		94	11,898	1.00	-	0.432	0.00	-	-	-	-	-	-
ъ	Assay type	ELISA Monoclonal antibady	504	82,744	0.89 (0.73-1.09)	0.280			-	-	-	-	-	-
log CS	a 1	<200	4 91	7.542	1.24 (0.33-2.87)	0.014	<0.001	7 27	-	-	-	-	-	-
risti	Sample size ^f	>200	221	87 802	0.58 (0.47.0.71)	-	NO.001	1.21	0.75 (0.64.0.87)	-	0.75 (0.64.0.86)	-	0.82 (0.71.0.05)	-
eth cte	Siz .	Probability based	151	47,803	1.00	N0.001	<0.001	18.05	1.00	N0.001	1.00	×0.001	1.00	0.010
y n ara	method	Non-probability based	251	47,471	2.08 (1.76-2.44)	<0.001	\$0.001	10.05	1.00	0.037	1.00 1.24(1.08-1.42)	0.002	1.00	0.013
Ъđ	memou	>80%	194	48 220	1.00		0.002	5 52	1.00	0.057	1.00	0.002	1.00	0.015
S	Response	<80%	32	6.062	0.59 (0.42-0.82)	0.002	0.002	5.52	0.79 (0.63-0.99)	0.044	0.76 (0.62-0.95)	0.016	0.89 (0.72-1.10)	0.300
	rate	Unclear	176	41.063	1.25(1.05-1.49)	0.010			1.07 (0.94-1.22)	0.262	1.07 (0.94-1.22)	0.260	1.13 (1.00-1.29)	0.046
E S	Voon of	<2000	49	7.244	1.00	-	<0.001	4.39	1.00	-	1.00	-	1.00	-
I I I	publication	2000-2010	206	51,983	0.61 (0.47-0.79)	<0.001	-0.001		0.88 (0.75-1.05)	0.166	0.88 (0.75-1.04)	0.141	0.90 (0.76-1.06)	0.212
lem	category	>2010	147	31,118	0.56 (0.42-0.73)	<0.001			0.74 (0.61-0.89)	0.002	0.74 (0.62-0.89)	0.001	0.76 (0.63-0.91)	0.004
	· · ·			21,110		.0.001				0.002		0.001		0.001

^a Variance explained by the multivariable model (adjusted R^2) = 68.85%. ^b Variance explained by the multivariable model (adjusted R^2) = 70.63%.

^c Variance explained by the multivariable model (adjusted R^2) = 73.85%.

^d Other populations include populations with an undetermined risk of acquiring HSV-2 infection such as patients with cervical cancer or their spouses.

^e Other countries include Argentina, Barbados,, Bolivia, Chile, Dominican republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, and Nicaragua.

^f Sample size denotes the sample size of each study population found in the original publication. Abbreviations: *ARR* = Adjusted risk ratio, CI = Confidence interval, ELISA = Enzyme-linked immunosorbent assay, HIC = High-income country HIV = Human immunodeficiency virus, HSV-2 = Herpes simplex virus type 2, LIC = Low-income country, LMIC = Lower-middle-income country, LR = Likelihood ratio, RR = Risk ratio, STI = Sexually transmitted infection, UMIC = Upper-middle-income country.

Table S6. Univariable and multivariable meta-regression analyses for HSV-2 seroprevalence among the different at-risk populations in Latin America and the Caribbean using the year of data collection as the temporal variable. The analysis using year of publication as the temporal variable is found in Table 3 of main text.

			Outcome measures	Sample size	Sample Univariable analysis				Multivariable analysis			
				T (IN	DD (050) CD		LR test	Adjusted	Model 1	a	Model 2	b
			Total n	Total N	<i>RR</i> (95%CI)	p-value	p-value	$R^{2}(\%)$	ARR (95% CI)	p-value	ARR (95% CI)	p-value
		General populations	236	56,457	1.00	-	< 0.001	45.98	1.00	-	1.00	-
		Intermediate-risk populations	24	6,775	1.52 (1.16-2.00)	0.002			1.65 (1.30-2.10)	0.001	1.58 (1.24-2.01)	< 0.001
	Population	Intermediate-risk populations 24 6.775 1.52 (1.16-2.00) 0.002 'opulation High-risk populations 93 25,344 3.09 (2.64-3.61) 0.001 PP STI clinic attendees and symptomatic populations 6 432 2.49 (1.47-4.22) 0.001 HV positive individuals and individuals in HIV discordant couples 19 2.840 3.21 (2.38-4.32) 0.001 Questions' 24 3.497 2.42 (1.85-3.16) 0.001 - <0.001		3.13 (2.71-3.62)	< 0.001	3.10 (2.67-3.59)	< 0.001					
	type	STI clinic attendees and symptomatic populations	6	432	2.49 (1.47-4.22)	0.001			2.47 (1.52-4.00)	< 0.001	2.40 (1.47-3.90)	< 0.001
		HIV positive individuals and individuals in HIV discordant couples	19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.95 (2.28-3.81)	< 0.001						
		Other populations ^c	24	3,497	2.42 (1.85-3.16)	< 0.001			1.60 (1.24-2.02)	< 0.001	1.56 (1.23-1.97)	< 0.001
		<20 years	35	6,538	1.00	-	< 0.001	10.26	1.00	-	1.00	-
		20-30 years	47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.64 (1.27-2.11)	< 0.001						
	Age group	30-40 years	22	2,933	2.58 (1.64-4.04)	< 0.001			2.14 (1.60-2.86)	< 0.001	2.23 (1.66-2.98)	< 0.001
		>40 years	39	5,940	2.84 (1.92-4.18)	< 0.001			3.01 (2.34-3.87)	< 0.001	3.08 (2.39-3.97)	< 0.001
stic		Mixed ages	259	72,183	2.49 (1.82-3.41)	< 0.001			1.70 (1.38-2.10)	<0.001	1.70 (1.37-2.09)	<0.001
teri		Women	234	38,816	1.00	-	0.001	4.82	1.00	-	1.00	
rac	Sex	Men	144	39,525	0.67 (0.56-0.80)	< 0.001			0.71 (0.63-0.79)	< 0.001	0.69 (0.61-0.77)	< 0.001
cha		Mixed sexes	24	17,004	0.81 (0.57-1.16)	0.267			0.61 (0.47-0.79)	< 0.001	0.63 (0.48-0.82)	0.001
ion		Brazil	106	25,766	1.00	-	< 0.001	12.58	-	-	-	-
ulat		Colombia	19	2,247	1.36 (0.91-2.01)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-	-	-		
Popt		Costa Rica	13	2,364	1.46 (0.92-2.30)	0.102			-	-	-	-
	Countries M F	Mexico	76	23,437	0.71 (0.56-0.91)	0.008			-	-	-	-
		Panama	15	3,334	1.81 (1.18-2.78)	0.006			-	-	-	-
		Peru	131	24,976	0.92 (0.74-1.14)	0.476			-	-	-	-
		Other ^d	42	13,221	1.84 (1.39-2.45)	< 0.001			-	-	-	-
		Central America	124	38,103	1.00	-	0.065	0.82	1.00	-	1.00	-
	Subregions	South America	264	54,798	0.95 (0.79-1.14)	0.606			1.11 (0.98-1.25)	0.082	1.09 (0.96-1.23)	0.147
		Caribbean	14	2,444	1.62 (1.02-2.58)	0.040			1.10 (0.82-1.47)	0.506	1.16 (0.86-1.56)	0.308
	a	LIC and LMIC	29	9,846	1.00	-	< 0.001	9.07	-	-	-	-
	Country's income	UMIC	354	81,539	0.45 (0.33-0.62)	< 0.001			-	-	-	-
	income	HIC	19	3,960	0.86 (0.54-1.36)	0.528			-	-	-	-
ics		Western Blot	94	11,898	1.00	-	0.432	0.00	-	-	-	-
erist	Assay type	ELISA	304	82,744	0.89 (0.73-1.09)	0.280			-	-	-	-
acto		Monoclonal antibody	4	703	1.24 (0.53-2.87)	0.614			-	-	-	-
har	Sample size	<200	81	7,542	1.00	-	< 0.001	7.27	1.00	-	1.00	-
5	Sample size	>200	321	87,803	0.58 (0.47-0.71)	<0.001			0.79 (0.67-0.93)	0.004	0.73 (0.63-0.85)	< 0.001
olo	Sampling	Probability based	151	47,471	1.00	-	< 0.001	18.05	1.00	-	1.00	-
hod	method	Non-probability based	251	47,874	2.08 (1.76-2.44)	< 0.001			1.17 (1.01-1.35)	0.030	1.18 (1.02-1.36)	0.026
met	_	≥80%	194	48,220	1.00	-	0.002	5.52	1.00	-	1.00	-
dy 1	Response	<80%	32	6,062	0.59 (0.42-0.82)	0.002			0.80 (0.64-1.00)	0.053	0.78 (0.62-0.97)	0.030
Stu	Tate	Unclear	176	41,063	1.25 (1.05-1.49)	0.010			1.09 (0.96-1.24)	0.189	1.11 (0.97-1.27)	0.104
= ~	Year of data	<2000	151	27,266	1.00	-	0.007	1.94	1.00	-	-	-
bles	collection	2000-2010	231	53,038	0.65 (0.54-0.78)	< 0.001			0.77 (0.68-0.88)	< 0.001	-	-
emp	category	>2010	20	14,041	0.85 (0.58-1.25)	0.429			0.95 (0.75-1.20)	0.683	-	-
ΗS	Year of data co	ollection	402	95,345	0.98 (0.97-0.99)	0.024	< 0.001	2.98	-	-	0.99 (0.98-0.99)	0.031

^a Variance explained by the multivariable model (adjusted R^2) = 69.12%.

^b Variance explained by the multivariable model (adjusted R^2) = 68.45%.

^cOther populations include populations with an undetermined risk of acquiring HSV-2 infection such as patients with cervical cancer or their spouses.

^d Other countries include Argentina, Barbados,, Bolivia, Chile, Dominican republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, and Nicaragua.

^e Sample size denotes the sample size of each study population found in the original publication.

Abbreviations: ARR = Adjusted risk ratio, CI = Confidence interval, ELISA = Enzyme-linked immunosorbent assay, HIC = High-income country HIV = Human immunodeficiency virus, HSV-2 = Herpes simplex virus type 2, LIC = Low-income country, LMIC = Lower-middle-income country, LR = Likelihood ratio, RR = Risk ratio, STI = Sexually transmitted infection, UMIC = Upper-middle-income country.

Table S7. Studies reporting proportions of HSV-2 virus isolation in clinically-diagnosed genital ulcer disease and in clinically-diagnosed genital herpes in Latin America and the Caribbean.

Author, year	Year(s) of data collection	Country	Study site	Original study design*	Sampling method	Population	HSV-2 biological assay	Sample size	Proportion of HSV-2 detection (%)
Patients with clinically-diagnosed GUD									
Gomes Naveca, 2013 97	2008-09	Brazil	Outpatient clinic	CS	Conv	Patients with primary GUD	PCR	324	50.9
Gomes Naveca, 2013 97	2008-09	Brazil	Outpatient clinic	CS	Conv	Patients with recurring GUD	PCR	95	70.5
Noda, 2016 98	2012-15	Cuba	Outpatient clinic	CS	Conv	Male patients with GUD aged 15-20 years	PCR	18	77.8
Noda, 2016 98	2012-15	Cuba	Outpatient clinic	CS	Conv	Male patients with GUD aged 21-30 years	PCR	48	60.4
Noda, 2016 98	2012-15	Cuba	Outpatient clinic	CS	Conv	Male patients with GUD aged 31-40 years	PCR	28	46.4
Noda, 2016 98	2012-15	Cuba	Outpatient clinic	CS	Conv	Male patients with GUD aged >41 years	PCR	19	10.5
Valdespino-Gomez, 1995 99	1990	Mexico	Community	CS	Conv	FSWs with GUD	IF	71	0.0
Patients with clinically-diagnosed genital herpes									
Balachandran, 1982 ¹⁰⁰	-	Puerto Rico	Outpatient clinic	CS	Conv	Patients with genital herpes	IF	12	91.6
Belli, 1990 101	1982-83	Argentina	Outpatient clinic	CS	Conv	Patients with genital herpes	IF	25	79.0
do Nascimento, 1998 102	1995	Brazil	Outpatient clinic	CS	Conv	HIV positive patients with genital herpes	PCR	36	94.4
Hun, 1987 ¹⁰³	-	Costa Rica	Outpatient clinic	CS	Conv	STI clinic attendees with genital herpes	Virus isolation	12	75.0
Orozco-Topete, 1997 ¹⁰⁴	-	Mexico	Outpatient clinic	RCT ^a	RS	HIV positive patients with recurrent genital herpes	Culture	45	100
Prabhakar, 1987 ¹⁰⁵	1982-84	Jamaica	Outpatient clinic	CS	Conv	Women with genital herpes	IF	40	100
Schultz, 1994 106	1988-90	Chile	Outpatient clinic	CS	Conv	Pregnant women with genital lesions	IF	20	90.0
Suárez, 1988 107	1985-86	Chile	Outpatient clinic	CS	Conv	Patients with primary genital herpes	IF	14	71.5
Suárez, 1988 107	1985-86	Chile	Outpatient clinic	CS	Conv	Patients with recurrent genital herpes	IF	64	90.2
Suárez, 1989 108	1984-86	Chile	Outpatient clinic	CS	Conv	Women with genital herpes	IF	13	76.9

^a The reported study design is the original study design (case control, cross sectional, longitudinal cohort, or randomized controlled trial). The included seroprevalence measures are those for the baseline measures at the beginning of the study.

Abbreviations: Conv = Convenience, CS = Cross sectional, GUD = Genital ulcer disease, FSWs = Female sex workers HSV-2 = Herpes simplex virus type 2, IF = Immunofluorescence, PCR = Polymerase chain reaction, RCT = Randomized controlled trial, RS = Random sampling. STI = Sexually transmitted infections.

Figure S2. Forest plots presenting the outcomes of the pooled mean proportions of HSV-2 virus isolation in clinically-diagnosed genital ulcer disease and in clinically-diagnosed genital herpes in Latin America and the Caribbean.

A) Patients with GUD

Abbreviations: CI = Confidence interval, GUD = Genital ulcer disease, HSV-2 = Herpes simplex virus type 2.

B) Patients with genital herpes

			Events per 100			
Author, Year	HSV-2 positive	Sample size	observations	W(Random)	Prev(%)	95%CI
Balachandran, 1982	11	12	<u> </u>	7.9%	91.67	[61.52; 99.79]
Belli, 1990	20	25		10.4%	80.00	[59.30: 93.17]
Do Nascimento, 1998	34	36	<u> </u>	11.4%	94.44	[81.34; 99.32]
Hun, 1987	9	12		7.9%	75.00	[42.81; 94.51]
Orozco-Topete, 1997	45	45	+	11.9%	100.00	[92.13; 100.00]
Prabhakar, 1987	40	40		11.7%	100.00	[91.19; 100.00]
Schultz, 1994	18	20		9.7%	90.00	[68.30; 98.77]
Suárez, 1988	10	14		8.4%	71.43	[41.90; 91.61]
Suárez, 1988	55	61		12.6%	90.16	[79.81; 96.30]
Suarez, 1989	10	13		8.2%	76.92	[46.19; 94.96]
Fixed effect model	252	278	\diamond		93.70	[90.10; 96.65]
Random effects model			\diamond	100.0%	91.07	[82.74; 97.17]
Prediction interval		_				[58.26; 100.00]
Heterogeneity: $I^2 = 71\%$, a	$\chi^2 = 0.0227, \chi^2_9 = 31$.28 (p < 0.01)				
		0	20 40 60 80 10	0		
			HSV-2 proportion (95%CI)			

Abbreviations: CI = Confidence interval, HSV-2 = Herpes simplex virus type 2.

Table S8. Summary of the precision assessment and risk of bias assessment for the studies reporting HSV-2 seroprevalence in Latin America and the Caribbean.

	HSV-2 seroprevalence measures				
Quality assessment	Number of studies	%			
Precision of seroprevalence measures ^a					
Low precision	29	17.8			
High precision	134	82.2			
Risk of bias quality domain ^b					
Sampling method					
Low risk of bias	47	28.8			
High risk of bias	116	71.2			
Response rate					
Low risk of bias	58	35.6			
High risk of bias	9	5.5			
Unclear risk of bias	96	58.9			
Summary of the risk of bias assessment					
Low risk of bias					
In at least one quality domain	63	38.6			
In both quality domains	30	18.4			
High risk of bias					
In at least one quality domain	37	22.7			
In both quality domains	4	2.4			
Seroprevalence studies where risk of bias assessment was possible	163	100			

^a Precision was assessed based on the overall sample size (not each stratum subsample size) of the study as reported in the record/publication. ^b Risk of bias was assessed based on the overall sample size (not each stratum subsample size) of the study as reported in the record/publication.

Abbreviations: HSV-2 = Herpes simplex virus type 2.

References

- 1. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS medicine* 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097
- Smolak A, Chemaitelly H, Hermez JG, et al. Epidemiology of Chlamydia trachomatis in the Middle East and north Africa: a systematic review, meta-analysis, and meta-regression. *Lancet Glob Health* 2019;7(9):e1197-e225. doi: 10.1016/S2214-109X(19)30279-7 [published Online First: 2019/08/14]
- 3. Abu-Raddad LJ, Akala FA, Semini I, et al. Characterizing the HIV/AIDS Epidemic in the Middle East and North Africa : Time for Strategic Action. World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/2457 License: CC BY 3.0 IGO. 2010
- 4. Brunham RC, Plummer FA. A general model of sexually transmitted disease epidemiology and its implications for control. *Med Clin North Am* 1990;74(6):1339-52.
- 5. Low N, Broutet N, Adu-Sarkodie Y, et al. Global control of sexually transmitted infections. *Lancet* 2006;368(9551):2001-16.
- 6. World Health Organization. Global strategy for the prevention and control of sexually transmitted infections: 2006 - 2015. Breaking the chain of transmission. WHO Press, Geneva, Switzerland. Found at: <u>http://www.who.int/reproductivehealth/publications/rtis/9789241563475/en/</u>. Last accessed April 2012. 2007
- 7. Lupi O. Prevalence and risk factors for herpes simplex infection among patients at high risk for HIV infection in Brazil. *Int J Dermatol* 2011;50(6):709-13.
- Sánchez-Alemán MA, Uribe-Salas FJ, Lazcano-Ponce EC, et al. HSV-2 seroincidence among Mexican college students: the delay of sexual debut is not enough to avoid risky sexual behaviours and virus transmission. Sex Transm Infect 2010;86(7):565-9.
- Konda KA, Lescano AG, Celentano DD, et al. In Peru, reporting male sex partners imparts significant risk of incident HIV/sexually transmitted infection: all men Engaging in same-sex behavior need prevention services. Sex Transm Dis 2013;40(7):569-74.
- Castillo R, Konda KA, Leon SR, et al. HIV and Sexually Transmitted Infection Incidence and Associated Risk Factors Among High-Risk MSM and Male-to-Female Transgender Women in Lima, Peru. J Acquir Immune Defic Syndr 2015;69(5):567-75.
- Sanchez J, Lama JR, Peinado J, et al. High HIV and ulcerative sexually transmitted infection incidence estimates among men who have sex with men in Peru: awaiting for an effective preventive intervention. *J Acquir Immune Defic Syndr* 2009;51 Suppl 1:S47-51.
- 12. Yanez Alvarez I, Martinez Salazar MF, Conde Gonzalez CJ, et al. Herpes simplex virus type 2 seroprevalence and seroincidence among HIV infected persons. *Enfermedades Infecciosas y Microbiologia* 2011;31(3):93-97.
- Abraham CD, Conde-Glez CJ, Cruz-Valdez A, et al. Sexual and demographic risk factors for herpes simplex virus type 2 according to schooling level among Mexican youths. *Sex Transm Dis* 2003;30(7):549-55.
- 14. Alberts CJ, Schim van der Loeff MF, Papenfuss MR, et al. Association of Chlamydia trachomatis infection and herpes simplex virus type 2 serostatus with genital human papillomavirus infection in men: the HPV in men study. *Sex Transm Dis* 2013;40(6):508-15.
- Almeida JFM, Campos AH, Marcello MA, et al. Investigation on the association between thyroid tumorigeneses and herpesviruses. *Journal of endocrinological investigation* 2017;40(8):823-29. doi: 10.1007/s40618-017-0609-y [published Online First: 2017/03/10]
- 16. Ashley-Morrow R, Nollkamper J, Robinson NJ, et al. Performance of Focus ELISA tests for herpes simplex virus type 1 (HSV-1) and HSV-2 antibodies among women in ten diverse geographical locations. *Clinical Microbiology and Infection* 2004;10(6):530-36. doi: <u>http://0-dx.doi.org.elibrary.qatar-weill.cornell.edu/10.1111/j.1469-0691.2004.00836.x</u>

- 17. Boulos R, Ruff AJ, Nahmias A, et al. Herpes simplex virus type 2 infection, syphilis, and hepatitis B virus infection in Haitian women with human immunodeficiency virus type 1 and human T lymphotropic virus type I infections. The Johns Hopkins University (JHU)/Centre pour le Developpement et la Santé (CDS) HIV Study Group. J Infect Dis 1992;166(2):418-20.
- Cárcamo CP, Campos PE, García PJ, et al. Prevalences of sexually transmitted infections in young adults and female sex workers in Peru: a national population-based survey. *Lancet Infect Dis* 2012;12(10):765-73.
- 19. Carvalho M, De Carvalho S, Pannuti CS, et al. Prevalence of herpes simplex type 2 antibodies and a clinical history of herpes in three different populations in Campinas City, Brazil. *International Journal of Infectious Diseases* 1999;3(2):94-98. doi: <u>http://0-dx.doi.org.elibrary.qatar-weill.cornell.edu/10.1016/S1201-9712%2899%2990016-4</u>
- 20. Clark JL, Konda KA, Munayco CV, et al. Prevalence of HIV, herpes simplex virus-2, and syphilis in male sex partners of pregnant women in Peru. *BMC Public Health* 2008;8:65-65.
- 21. Clemens SAC, Farhat CK. Seroprevalence of herpes simplex 1-2 antibodies in Brazil. *Rev Saude Publica* 2010;44(4):726-34.
- 22. Conde-Glez C, Lazcano-Ponce E, Rojas R, et al. Seroprevalences of varicella-zoster virus, herpes simplex virus and cytomegalovirus in a cross-sectional study in Mexico. *Vaccine* 2013;31(44):5067-74.
- Conde-Gonzalez CJ, Lazcano-Ponce E, Hernandez-Giron C, et al. [Seroprevalence of type 2 herpes simplex virus infection in 3 population groups of Mexico City]. *Salud publica de Mexico* 2003;45 Supp 5:S608-16. [published Online First: 2004/02/21]
- 24. Cowan FM, French RS, Mayaud P, et al. Seroepidemiological study of herpes simplex virus types 1 and 2 in Brazil, Estonia, India, Morocco, and Sri Lanka. *Sex Transm Infect* 2003;79(4):286-90.
- 25. Da Rosa-Santos OL, Gonçalves Da Silva A, Pereira AC. Herpes simplex virus type 2 in Brazil: seroepidemiologic survey. *Int J Dermatol* 1996;35(11):794-6.
- 26. De Sanjose S, Munoz N, Bosch F, et al. Sexually transmitted agents and cervical neoplasia in Colombia and Spain. *International Journal of Cancer* 1994;56(3):358-63.
- 27. Domercant JW, Jean Louis F, Hulland E, et al. Seroprevalence of Herpes Simplex Virus type-2 (HSV-2) among pregnant women who participated in a national HIV surveillance activity in Haiti. *BMC Infect Dis* 2017;17(1):577-77.
- 28. Gabster A, Pascale JM, Cislaghi B, et al. High Prevalence of Sexually Transmitted Infections, and High-Risk Sexual Behaviors Among Indigenous Adolescents of the Comarca Ngäbe-Buglé, Panama. Sex Transm Dis 2019;46(12):780-87.
- 29. Goncalez TT, Sabino EC, Murphy EL, et al. Human immunodeficiency virus test-seeking motivation in blood donors, São Paulo, Brazil. *Vox Sang* 2006;90(3):170-6.
- 30. Goncalez TT, Blatyta PF, Santos FM, et al. Does offering human immunodeficiency virus testing at the time of blood donation reduce transfusion transmission risk and increase disclosure counseling? Results of a randomized controlled trial, São Paulo, Brazil. *Transfusion* 2015;55(6):1214-22.
- 31. Gutierrez J-P, Bertozzi SM, Conde-Glez CJ, et al. Risk behaviors of 15-21 year olds in Mexico lead to a high prevalence of sexually transmitted infections: results of a survey in disadvantaged urban areas. BMC Public Health 2006;6:49-49.
- Gutierrez JP, Conde-González CJ, Walker DM, et al. Herpes simplex virus type 2 among Mexican high school adolescents: prevalence and association with community characteristics. *Arch Med Res* 2007;38(7):774-82.
- Herrera-Ortiz A, Conde-Glez CJ, Vergara-Ortega DN, et al. Avidity of antibodies against HSV-2 and risk to neonatal transmission among Mexican pregnant women. *Infect Dis Obstet Gynecol* 2013;2013:140142-42.
- 34. Juarez-Figueroa LA, Uribe-Salas FJ, Conde-Glez CJ, et al. Hepatitis B markers in men seeking human immunodeficiency virus antibody testing in Mexico City. Sex Transm Dis 1997;24(4):211-7. [published Online First: 1997/04/01]

- 35. Konda KA, Klausner JD, Lescano AG, et al. The epidemiology of herpes simplex virus type 2 infection in low-income urban populations in coastal Peru. *Sex Transm Dis* 2005;32(9):534-41.
- 36. Lazcano-Ponce E, Smith JS, Muñoz N, et al. High prevalence of antibodies to herpes simplex virus type 2 among middle-aged women in Mexico City, Mexico: a population-based study. Sex Transm Dis 2001;28(5):270-6.
- 37. Levett PN. Seroprevalence of HSV-1 and HSV-2 in Barbados. *Med Microbiol Immunol* 2005;194(1-2):105-7.
- 38. Moreira-Soto A, Cabral R, Pedroso C, et al. Exhaustive TORCH Pathogen Diagnostics Corroborate Zika Virus Etiology of Congenital Malformations in Northeastern Brazil. *mSphere* 2018;3(4) doi: 10.1128/mSphere.00278-18 [published Online First: 2018/08/10]
- 39. Muñoz N, Kato I, Bosch FX, et al. Cervical cancer and herpes simplex virus type 2: case-control studies in Spain and Colombia, with special reference to immunoglobulin-G sub-classes. *Int J Cancer* 1995;60(4):438-42.
- 40. Nascimento MC, Ferreira S, Sabino E, et al. Performance of the HerpeSelect (Focus) and Kalon enzymelinked immunosorbent assays for detection of antibodies against herpes simplex virus type 2 by use of monoclonal antibody-blocking enzyme immunoassay and clinicovirological reference standards in Brazil. *Journal of clinical microbiology* 2007;45(7):2309-11. doi: 10.1128/jcm.00144-07 [published Online First: 2007/05/18]
- 41. Nascimento MC, De Souza VA, Sumita LM, et al. Prevalence of, and risk factors for Kaposi's sarcomaassociated herpesvirus infection among blood donors in Brazil: A multi-center serosurvey. *Journal of Medical Virology* 2008;80(7):1202-10. doi: <u>http://0-dx.doi.org.elibrary.qatar-</u> weill.cornell.edu/10.1002/jmv.21188
- Nascimento MC, Sumita LM, Souza VU, et al. Seroprevalence of Kaposi sarcoma-associated herpesvirus and other serologic markers in the Brazilian Amazon. *Emerging infectious diseases* 2009;15(4):663-7. doi: 10.3201/eid1504.081488 [published Online First: 2009/04/01]
- 43. Oberle MW, Rosero-Bixby L, Lee FK, et al. Herpes simplex virus type 2 antibodies: high prevalence in monogamous women in Costa Rica. *Am J Trop Med Hyg* 1989;41(2):224-9.
- 44. Patnaik P, Herrero R, Morrow RA, et al. Type-specific seroprevalence of herpes simplex virus type 2 and associated risk factors in middle-aged women from 6 countries: the IARC multicentric study. *Sex Transm Dis* 2007;34(12):1019-24.
- 45. Patzi-Churqui M, Terrazas-Aranda K, Liljeqvist JA, et al. Prevalence of viral sexually transmitted infections and HPV high-risk genotypes in women in rural communities in the Department of La Paz, Bolivia. BMC Infect Dis 2020;20(1):204. doi: 10.1186/s12879-020-4931-1 [published Online First: 2020/03/08]
- 46. Paz-Bailey G, Morales-Miranda S, Jacobson JO, et al. High rates of STD and sexual risk behaviors among Garífunas in Honduras. *J Acquir Immune Defic Syndr* 2009;51 Suppl 1:S26-34.
- 47. Rodríguez AC, Castle PE, Smith JS, et al. A population based study of herpes simplex virus 2 seroprevalence in rural Costa Rica. *Sex Transm Infect* 2003;79(6):460-5.
- 48. Sánchez J, Gotuzzo E, Escamilla J, et al. Gender differences in sexual practices and sexually transmitted infections among adults in Lima, Peru. *Am J Public Health* 1996;86(8):1098-107.
- 49. Sánchez-Alemán MA, Conde-Glez CJ, Gayet C, et al. Sexual behavior and herpes simplex virus 2 infection in college students. *Arch Med Res* 2005;36(5):574-80.
- 50. Sánchez-Alemán MA, Conde-Glez CJ, Uribe-Salas F. Core group approach to identify college students at risk for sexually transmitted infections. *Rev Saude Publica* 2008;42(3):428-36.
- Sierra CA, Bedoya AM, Paris S, et al. Prevalence of specific herpes simplex virus-2 antibodies and associated factors in women of a rural town of Colombia. *Trans R Soc Trop Med Hyg* 2011;105(4):232-8.
- 52. Smith JS, Herrero R, Muñoz N, et al. Prevalence and risk factors for herpes simplex virus type 2 infection among middle-age women in Brazil and the Philippines. *Sex Transm Dis* 2001;28(4):187-94.

- 53. Smith JS, Herrero R, Bosetti C, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. *Journal of the National Cancer Institute* 2002;94(21):1604-13. [published Online First: 2002/11/07]
- 54. Uribe-Salas F, Palma-Coca O, Sánchez-Alemán MA, et al. Population-based prevalence of antibodies against herpes simplex virus type 2 and socio-demographic characteristics in Mexico. *Trans R Soc Trop Med Hyg* 2009;103(2):151-8.
- 55. Vaccarella S, Franceschi S, Herrero R, et al. Sexual behavior, condom use, and human papillomavirus: pooled analysis of the IARC human papillomavirus prevalence surveys. *Cancer Epidemiology and Prevention Biomarkers* 2006;15(2):326-33.
- 56. Weinberg A, Canto CL, Pannuti CS, et al. Herpes simplex virus type 2 infection in pregnancy: asymptomatic viral excretion at delivery and seroepidemiologic survey of two socioeconomically distinct populations in Sao Paulo, Brazil. *Revista do Instituto de Medicina Tropical de Sao Paulo* 1993;35(3):285-90. [published Online First: 1993/05/01]
- 57. Zamilpa-Mejía LG, Uribe-Salas F, Juárez-Figueroa L, et al. Prevalencia y factores asociados con sífilis y herpes genital en dos grupos de población femenina. *Salud publica de Mexico* 2003;45 Supp 5:S617-23.
- 58. Benzaken A, Sabidó M, Galban E, et al. HIV and sexually transmitted infections at the borderlands: situational analysis of sexual health in the Brazilian Amazon. *Sex Transm Infect* 2012;88(4):294-300.
- 59. Celentano DD, Mayer KH, Pequegnat W, et al. Prevalence of Sexually Transmitted Diseases and Risk Behaviors from the NIMH Collaborative HIV/STD Prevention Trial. *International journal of sexual health : official journal of the World Association for Sexual Health* 2010;22(4):272-84. doi: 10.1080/19317611.2010.494092 [published Online First: 2010/01/01]
- 60. Clark JL, Lescano AG, Konda KA, et al. Syndromic management and STI control in urban Peru. *PLoS One* 2009;4(9):e7201-e01.
- Couture M-C, Soto JC, Akom E, et al. Clients of female sex workers in Gonaives and St-Marc, Haiti characteristics, sexually transmitted infection prevalence and risk factors. *Sex Transm Dis* 2008;35(10):849-55.
- 62. Pinho AA, Chinaglia M, Lippman SA, et al. Prevalence and factors associated with HSV-2 and hepatitis B infections among truck drivers crossing the southern Brazilian border. *Sex Transm Infect* 2011;87(7):553-9.
- 63. Sabidó M, Lahuerta M, Montoliu A, et al. Human immunodeficiency virus, sexually transmitted infections, and risk behaviors among clients of sex workers in Guatemala: are they a bridge in human immunodeficiency virus transmission? *Sex Transm Dis* 2011;38(8):735-42.
- 64. Uribe-Salas F, Hernandez-Giron C, Conde-Gonzalez C, et al. Characteristics related to STD/HIV in men working in Mexico City bars where female prostitution takes place. *Salud publica de Mexico* 1995;37(5):385-93.
- 65. Villarroel-Torrico M, Montano K, Flores-Arispe P, et al. Syphilis, human immunodeficiency virus, herpes genital and hepatitis B in a women's prison in Cochabamba, Bolivia: prevalence and risk factors. *Revista espanola de sanidad penitenciaria* 2018;20(2):47-54. [published Online First: 2018/09/20]
- 66. Brito MO, Hodge D, Donastorg Y, et al. Risk behaviours and prevalence of sexually transmitted infections and HIV in a group of Dominican gay men, other men who have sex with men and transgender women. *BMJ Open* 2015;5(4):e007747-e47.
- 67. Conde-Glez CJ, Juárez-Figueroa L, Uribe-Salas F, et al. Analysis of herpes simplex virus 1 and 2 infection in women with high risk sexual behaviour in Mexico. *Int J Epidemiol* 1999;28(3):571-6.
- 68. HIV, STD and risk behaviors among female sex worker in El Salvador. Poster CDC0622. International AIDS Conference; 2010; Vienna, Austria.
- 69. Gotuzzo E, Sanchez J, Escamilla J, et al. Human T cell lymphotropic virus type I infection among female sex workers in Peru. *J Infect Dis* 1994;169(4):754-9. [published Online First: 1994/04/01]
- 70. Hakre S, Arteaga G, Núñez AE, et al. Prevalence of HIV and other sexually transmitted infections and factors associated with syphilis among female sex workers in Panama. *Sex Transm Infect* 2013;89(2):156-64.

- 71. Hakre S, Arteaga GB, Núñez AE, et al. Prevalence of HIV, syphilis, and other sexually transmitted infections among MSM from three cities in Panama. *J Urban Health* 2014;91(4):793-808.
- 72. Hernandez F, Arambu N, Alvarez B, et al. High incidence of HIV and low HIV prevention coverage among men who have sex with men in Managua, Nicaragua. *Sexually Transmitted Infections* 2011;87(SUPPL. 1):A146. doi: <u>http://0-dx.doi.org.elibrary.qatar-weill.cornell.edu/10.1136/sextrans-2011-050108.112</u>
- 73. Lama JR, Lucchetti A, Suarez L, et al. Association of herpes simplex virus type 2 infection and syphilis with human immunodeficiency virus infection among men who have sex with men in Peru. *J Infect Dis* 2006;194(10):1459-66.
- 74. Morales-Miranda S, Paredes M, Arambu N, et al. HIV, STD and risk behaviors among men who have sex with men, female sex workers, and indigenous Garífuna population in Honduras. WEAX0305 In: International AIDS Conference Mexico, Mexico, 2008.
- 75. Perez-Brumer AG, Konda KA, Salvatierra HJ, et al. Prevalence of HIV, STIs, and risk behaviors in a crosssectional community- and clinic-based sample of men who have sex with men (MSM) in Lima, Peru. *PLoS One* 2013;8(4):e59072-e72.
- 76. Perla ME, Ghee AE, Sánchez S, et al. Genital tract infections, bacterial vaginosis, HIV, and reproductive health issues among Lima-based clandestine female sex workers. *Infect Dis Obstet Gynecol* 2012;2012:739624-24.
- 77. Rodrigues J, Grinsztejn B, Bastos FI, et al. Seroprevalence and factors associated with herpes simplex virus type 2 among HIV-negative high-risk men who have sex with men from Rio de Janeiro, Brazil: a cross-sectional study. *BMC Infect Dis* 2009;9:39-39.
- 78. Sanchez J, Gotuzzo E, Escamilla J, et al. Sexually transmitted infections in female sex workers: reduced by condom use but not by a limited periodic examination program. *Sex Transm Dis* 1998;25(2):82-9. [published Online First: 1998/03/28]
- 79. Sanchez J, Lama JR, Kusunoki L, et al. HIV-1, sexually transmitted infections, and sexual behavior trends among men who have sex with men in Lima, Peru. *J Acquir Immune Defic Syndr* 2007;44(5):578-85.
- 80. Shah NS, Kim E, de Maria Hernández Ayala F, et al. Performance and comparison of self-reported STI symptoms among high-risk populations MSM, sex workers, persons living with HIV/AIDS in El Salvador. *Int J STD AIDS* 2014;25(14):984-91.
- 81. Silva-Santisteban A, Raymond HF, Salazar X, et al. Understanding the HIV/AIDS epidemic in transgender women of Lima, Peru: results from a sero-epidemiologic study using respondent driven sampling. *AIDS Behav* 2012;16(4):872-81.
- 82. Soto RJ, Ghee AE, Nunez CA, et al. Sentinel surveillance of sexually transmitted infections/HIV and risk behaviors in vulnerable populations in 5 Central American countries. J Acquir Immune Defic Syndr 2007;46(1):101-11.
- 83. Uribe-Salas F, Hernández-Avila M, Juárez-Figueroa L, et al. Risk factors for herpes simplex virus type 2 infection among female commercial sex workers in Mexico City. *Int J STD AIDS* 1999;10(2):105-11.
- 84. Uribe-Salas F, Conde-Glez CJ, Juarez-Figueroa L, et al. Socio-demographic characteristics and sex practices related to herpes simplex virus type 2 infection in Mexican and Central American female sex workers. *Epidemiol Infect* 2003;131(2):859-65.
- 85. Zunt JR, La Rosa AM, Peinado J, et al. Risk factors for HTLV-II infection in Peruvian men who have sex with men. *Am J Trop Med Hyg* 2006;74(5):922-5.
- 86. Martinez MJ, Navarrete N, Santander E, et al. Seroprevalence of herpes simplex virus type 2 (HSV-2) infection in two clinics for sexually transmitted diseases in Santiago, Chile. *Revista medica de Chile* 2005;133(3):302-06.
- 87. Batista MD, Ferreira S, Sauer MM, et al. High human herpesvirus 8 (HHV-8) prevalence, clinical correlates and high incidence among recently HIV-1-infected subjects in Sao Paulo, Brazil. *PLoS ONE* 2009;4(5):e5613. doi: <u>http://0-dx.doi.org.elibrary.gatar-weill.cornell.edu/10.1371/journal.pone.0005613</u>
- 88. Lima LRP, Fernandes LEBC, Villela DAM, et al. Co-infection of human herpesvirus type 2 (HHV-2) and human immunodeficiency virus (HIV) among pregnant women in Rio de Janeiro, Brazil. *AIDS Care* -

Psychological and Socio-Medical Aspects of AIDS/HIV 2018;30(3):378-82. doi: <u>http://o-dx.doi.org.elibrary.qatar-weill.cornell.edu/10.1080/09540121.2017.1378798</u>

- 89. Paz-Bailey G, Isern Fernandez V, Morales Miranda S, et al. Unsafe sexual behaviors among HIV-positive men and women in Honduras: the role of discrimination, condom access, and gender. *Sex Transm Dis* 2012a;39(1):35-41.
- 90. Paz-Bailey G, Shah N, Creswell J, et al. Risk behaviors and STI prevalence among people with HIV in El Salvador. *Open AIDS J* 2012b;6:205-12.
- 91. Santos FC, De Oliveira SA, Setubal S, et al. Seroepidemiological study of herpes simplex virus type 2 in patients with the acquired immunodeficiency syndrome in the City of Niteroi, Rio de Janeiro, Brazil. *Memorias do Instituto Oswaldo Cruz* 2006;101(3):315-19.
- 92. Bahena-Roman M, Sanchez-Aleman MA, Contreras-Ochoa CO, et al. Prevalence of active infection by herpes simplex virus type 2 in patients with high-risk human papillomavirus infection: A cross-sectional study. J Med Virol 2020 doi: 10.1002/jmv.25668 [published Online First: 2020/01/12]
- 93. Calderon G, Pinto M, Pizarro R, et al. Viral infections associated in breast cancer patients in a Latin American cancer institute. *Annals of Surgical Oncology* 2018;25(2 Supplement 1):148-49. doi: <u>http://0-dx.doi.org.elibrary.qatar-weill.cornell.edu/10.1245/s10434-018-6534-2</u>
- 94. Castle PE, Escoffery C, Schachter J, et al. Chlamydia trachomatis, herpes simplex virus 2, and human T-cell lymphotrophic virus type 1 are not associated with grade of cervical neoplasia in Jamaican colposcopy patients. *Sex Transm Dis* 2003;30(7):575-80.
- 95. DeBritton RC, Hildesheim A, De Lao SL, et al. Human papillomaviruses and other influences on survival from cervical cancer in Panama. *Obstet Gynecol* 1993;81(1):19-24.
- 96. Stone KM, Zaidi A, Rosero-Bixby L, et al. Sexual behavior, sexually transmitted diseases, and risk of cervical cancer. *Epidemiology* 1995;6(4):409-14.
- 97. Gomes Naveca F, Sabidó M, Amaral Pires de Almeida T, et al. Etiology of genital ulcer disease in a sexually transmitted infection reference center in Manaus, Brazilian Amazon. *PLoS One* 2013;8(5):e63953-e53.
- 98. Noda AA, Blanco O, Correa C, et al. Etiology of Genital Ulcer Disease in Male Patients Attending a Sexually Transmitted Diseases Clinic: First Assessment in Cuba. *Sex Transm Dis* 2016;43(8):494-7.
- 99. Valdespino-Gomez JL, Garcia-Garcia ML, del Rio-Chiriboga C, et al. Sexually transmitted diseases and the HIV/AIDS epidemic. *Salud publica de Mexico* 1995;37(6):549-55.
- 100. Balachandran N, Frame B, Chernesky M, et al. Identification and typing of herpes simplex viruses with monoclonal antibodies. *Journal of clinical microbiology* 1982;16(1):205-08.
- 101. Belli L, Irigoyen MH, Casco RH, et al. Pautas para el manejo de la infección herpética genital en la experiencia de un centro de atención de ETS en Buenos Aires (Argentina). Med Cutan Ibero Lat Am 1990;18(1):44-8.
- 102. do Nascimento MC, Sumita LM, de Souza VA, et al. Detection and direct typing of herpes simplex virus in perianal ulcers of patients with AIDS by PCR. *Journal of clinical microbiology* 1998;36(3):848-49.
- 103. Hun L, Fuentes LG. Diagnóstico del laboratorio de virus herpes simplex en Costa Rica. *Rev Costarric Cienc Med* 1987;8(3):143-8.
- 104. Orozco-Topete R, Sierra-Madero J, Cano-Dominguez C, et al. Safety and efficacy of Virend for topical treatment of genital and anal herpes simplex lesions in patients with AIDS. *Antiviral Research* 1997;35(2):91-103. doi: <u>http://0-dx.doi.org.elibrary.qatar-weill.cornell.edu/10.1016/S0166-3542%2897%2900015-6</u>
- 105. Prabhakar P, Allam MG, Prabhu PS, et al. Genital herpes in Jamaica. A clinical and pathological study (1982-1984). *West Indian Med J* 1987;36(3):154-8.
- 106. Schultz R, Suarez M, Saavedra T. Follow-up of pregnant women at high risk of transmitting herpes simplex virus. *Bulletin of the Pan American Health Organization* 1994;28(2):163-8. [published Online First: 1994/06/01]
- 107. Suárez M, Labbé V, Saavedra T, et al. Tipos víricos del herpes simple asociados a infecciones genitales primarias y recurrentes en Chile. *Bol Oficina Sanit Panam* 1988;105(1):13-9.

108. Suarez M, Briones H, Dubinovsky S, et al. Genital herpes infection in Chilean female university students. Boletin de la Oficina Sanitaria Panamericana Pan American Sanitary Bureau 1989;106(5):389-95.